www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemesurjektiv , injektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Gleichungssysteme" - surjektiv , injektiv
surjektiv , injektiv < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektiv , injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Fr 01.08.2008
Autor: Surfer

Hallo, bin hier gerade auf etwas gestoßen, wenn ich eine Matrix habe in meinem Fall 3x3 wie kann ich dann herausfinden ob sie injektiv oder surjektiv ist? kann sie auch bijektiv sein?

lg Surfer

        
Bezug
surjektiv , injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Fr 01.08.2008
Autor: blascowitz

Guten Morgen

einfach mal den Kern der Matrix berechnen. Ist die Dimension des Kerns der Matrix 0 (also ist nur der Nullvektor enthalten) dann ist die Abbildung, die zu der Matrix gehört(weil ne matrix ist ja nur eine darstellung einer linearen Abbildung) injektiv. Und dann musste dir noch den Rang der Matrix, also die Dimension des Bildes der Abbildung, anschauen. Senn du eine Abbildung [mm] \alpha: R^n \rightarrow R^m [/mm] hast dann ist die [mm] \alpha [/mm] zugeordnete  Matrix eine $m x n $ Matrix. Wenn jetzt der Rang der Matrix $m$ ist  die Abbildung surjektiv. Im Fall von Endomorphismen(also Abbildungen [mm] R^n\rightarrow R^n) [/mm] folgt aus injektiv automatisch surjektiv und damit bijektiv da [mm] \dim [/mm] V= [mm] \dim Ker(\alpha)+\dim Im(\alpha). [/mm]
Einen schönen tach noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]