www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale Funktionensymmetrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - symmetrie
symmetrie < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 So 30.12.2007
Autor: engel

Hallo!

Warum ist die funktion punktsymmetrisch? Ich dachte, dass eine funktion nur dann symmetrishc ist, wenn entweder alle x^(ungerade) bzw. x^(gerade)

Funktion ist:

-x + [mm] \bruch{3x}{x² - 1} [/mm]

Bitte erklärt es mir, danke!

        
Bezug
symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 So 30.12.2007
Autor: ONeill

Hallo!
> Warum ist die funktion punktsymmetrisch? Ich dachte, dass
> eine funktion nur dann symmetrishc ist, wenn entweder alle
> x^(ungerade) bzw. x^(gerade)
>  
> Funktion ist:
>  
> -x + [mm]\bruch{3x}{x² - 1}[/mm]
>  
> Bitte erklärt es mir, danke!

Also es gilt:
f(-x)=f(x) Symmetrisch zur y-Achse
f(-x)=-f(x) Puntksymmetrisch zum Ursprung

Du setzt also anstatt x einfach (-x) ein und schaust, inwiefern das [mm] f_{(-x)} [/mm] mit [mm]f_{(x)}[/mm] zusammenhängt.

Gruß ONeill

Bezug
                
Bezug
symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 So 30.12.2007
Autor: engel

Hi!

Okay, danke, jetzt klappts..

Der Grenzwert für x--> unendlich ist doch - unendlich?



Bezug
                        
Bezug
symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 So 30.12.2007
Autor: engel

als 1.Ableitung hab ich raus:

[mm] (-x^4 [/mm] - x² - 4) / (x²-1)²

Stimmt das?

Danke!

Bezug
                                
Bezug
symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 So 30.12.2007
Autor: Event_Horizon

Hallo!


[mm] $\left(-x+\bruch{3x}{x² - 1}\right)'=-1+\left(\bruch{3x}{x² - 1}\right)'=-1+\bruch{3(x^2 - 1)+6x^2}{(x^2 - 1)^2}$ [/mm]

Wenn ich das jetzt auf einen Nenner bringe, komme ich leider nicht auf dein Ergebnis

Bezug
                                        
Bezug
symmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 So 30.12.2007
Autor: engel

Nicht - 6x²?

Bezug
                                                
Bezug
symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 So 30.12.2007
Autor: schachuzipus

Hallo engel,

du hast recht, es sollte [mm] $\red{-}6x^2$ [/mm] sein


Gruß

schachuzipus

Bezug
                        
Bezug
symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 So 30.12.2007
Autor: Event_Horizon

Das ist richtig. Der Bruch geht gegen 0, aber es bleibt noch das -x. Die Funktion verläuft asymptotisch gegen g(x)=-x.

Bezug
        
Bezug
symmetrie: nur bei ganzrationalen Fkt.
Status: (Antwort) fertig Status 
Datum: 08:02 Mo 31.12.2007
Autor: Loddar

Hallo engel!


> Ich dachte, dass eine funktion nur dann symmetrisch ist, wenn
> entweder alle x^(ungerade) bzw. x^(gerade)

Diese Vereinfachung gilt nur für MBganzrationale Funktionen des Types $f(x) \ = \ [mm] a_n*x^n+a_{n-1}*x^{n-1}+...+a_1*x+a_0$ [/mm] (also z.B. $f(x) \ = \ [mm] -x^3+3x$ [/mm] ).

Die allgemeine Bedingung wurde Dir oben schon genannt ... bzw.
[guckstduhier]  .  .  .  .  MBSymmetrie

Also einfach mal den Term [mm] $f(\red{-}x)$ [/mm] berechnen und vergleichen ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]