www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysiksymmetrischer rotator
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - symmetrischer rotator
symmetrischer rotator < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

symmetrischer rotator: aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:57 Fr 12.01.2007
Autor: sindbad

Aufgabe
Die Hamiltonfuntktion eines symmetrischen Kreisels, ausgedrückt durch den Drehimpuls  , lautet:
[mm] H=\bruch{1}{2\delta_{x}}((L_{x})^{2}+(L_{y})^{2})+\bruch{1}{2\delta_{z}}(L_{z})^{2} [/mm]
mit den Trägheitsmomenten [mm] \delta_{x}=\delta_{y} [/mm] und [mm] \delta_{z} [/mm] . Berechnen sie die Eigenenergien und Eigenfunktionen des zugehörigen quantenmechanischen Hamiltonoperators.

Hallo, also hier versteh ich leider echt so gut wie gar nichts, weiß nicht ob mir da jemand helfen kann... Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
symmetrischer rotator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Fr 12.01.2007
Autor: sindbad

... ausgedrückt durch den Drehimpuls [mm] \vec{L} [/mm] muss es heißen.

Bezug
        
Bezug
symmetrischer rotator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 Do 25.01.2007
Autor: chrisno

Nach meiner trüben Erinnerung steht das zum Beispiel in der Quantenmechanik von Messiah

Bezug
        
Bezug
symmetrischer rotator: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Mo 05.02.2007
Autor: galileo

Hallo sindbad

Um auf eine Form der Aufgabe zu kommen, die vollständig von der Theorie behandelt wird, muss man den Hamilton Operator in [mm]\vec{L}^2 \quad \mathrm{und}\quad L_{z}[/mm] ausdrücken.

[mm] \hat{H}=\bruch{1}{2\delta_{x}}\left( L_{x}^2+L_{y}^2+L_{z}^2\right)- \bruch{1}{2\delta_{x}}L_{z}^2+\bruch{1}{2\delta_{z}}L_{z}^2= \bruch{1}{2\delta_{x}}\vec{L}^2+\left( \bruch{1}{2\delta_{z}}-\bruch{1}{2\delta_{x}}\right)L_{z}^2 [/mm]

Schöne Grüße, galileo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]