www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrat^(2^m)+1 irreduzibel in Q[t]
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - t^(2^m)+1 irreduzibel in Q[t]
t^(2^m)+1 irreduzibel in Q[t] < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

t^(2^m)+1 irreduzibel in Q[t]: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:26 Mo 09.03.2020
Autor: Boogie2015

Aufgabe
Zeige für $m [mm] \ge [/mm] 1$ die folgenden Aussagen:

a) Die Binomialkoeffizienten [mm] $\binom{2^{m}}{k}$ [/mm] sind für $k = 1, [mm] \ldots, 2^{m} [/mm] - 1$ durch $2$ teilbar.

b) Das Polynom $f = [mm] t^{2^{m}} [/mm] + 1$ ist irreduzibel in [mm] $\mathbb{Q}[/mm] [t]$

Hinweis: In Teil a) betrachte man das Polynom $(x + [mm] y)^{2^{m}}$ [/mm] in [mm] $\mathbb{Z}/2 \mathbb{Z} [/mm] [x,y]$, und in Teil b) nutze man dann Teil a)

Hallo zusammen, ich schreibe in 3 Wochen die Algebra - Klausur und ich gehe ein paar Übungsaufgaben durch, um mich darauf vorzubereiten und um den Stoff zu wiederholen.

Ich bin mit der obigen Aufgabe schon länger beschäftigt und komme nicht weiter, bzw. weiß nicht, wie mir der Hinweis helfen soll, die Aufgabe zu lösen.


Zu  a)

Hier dachte ich mir zuerst, ich zeige die Aussage durch Induktion, aber das macht nicht so viel Sinn, da man per Induktion eine Aussage für alle $n [mm] \in \mathbb{N}$ [/mm] zeigt, oder ? Vielleicht irre ich mich auch, weil es schon spät ist...


Daher versuche ich, den Hinweis in der Aufgabenstellung zu nutzen.

Ich soll das Polynom $(x + [mm] y)^{2^{m}}$ [/mm] in [mm] $\mathbb{Z}/2 \mathbb{Z} [/mm] [x,y]$.


Dazu kurz eine Frage:

Sind die Koeffizienten des Polynoms $(x + [mm] y)^{2^{m}}$ [/mm] nun Äquivalenzklassen ? Weil die Elemente von [mm] $\mathbb{Z}/2 \mathbb{Z}$ [/mm] sind ja Äquivalenzklassen... Das verwirrt mich, denn was soll ein Polynom sein, dessen Koeffizienten Mengen sind...?


Ich kann das Polynom $(x + [mm] y)^{2^{m}}$ [/mm]  durch den binomischen Lehrsatz folgendermaßen ausdrücken:

$(x + [mm] y)^{2^{m}} [/mm] = [mm] \sum\limits_{k = 0}^{2^{m}} \binom{2^{m}}{k} x^{n - k} y^{k}$ [/mm]


Und in dieser Summe finde ich den Binomialkoeffizienten [mm] $\binom{2^{m}}{k}$ [/mm] wieder...


Ich weiß aber nicht, wie mir das Polynom helfen soll, die Aussage a) zu beweisen... Sieht da jemand, inwiefern der Hinweis helfen soll ?

Würde mich für ein paar Tipps freuen.


Bei der b) setze ich mich später nochmal hin. Ich hatte vorhin, denke ich, einen Ansatz. Der muss noch ausreifen.


Liebe Grüße

        
Bezug
t^(2^m)+1 irreduzibel in Q[t]: Hinweise
Status: (Antwort) fertig Status 
Datum: 08:57 Mo 09.03.2020
Autor: statler

Hi!

> Zeige für [mm]m \ge 1[/mm] die folgenden Aussagen:
>  
> a) Die Binomialkoeffizienten [mm]\binom{2^{m}}{k}[/mm] sind für [mm]k = 1, \ldots, 2^{m} - 1[/mm]
> durch [mm]2[/mm] teilbar.
>  
> b) Das Polynom $f = [mm]t^{2^{m}}[/mm] + 1$ ist irreduzibel in
> [mm]$\mathbb{Q}[/mm] [t]$
>  
> Hinweis: In Teil a) betrachte man das Polynom [mm](x + y)^{2^{m}}[/mm] in [mm]\mathbb{Z}/2 \mathbb{Z} [x,y][/mm], und in Teil b) nutze man dann Teil a)
>  Hallo zusammen, ich schreibe in 3 Wochen die Algebra - Klausur und ich gehe ein paar Übungsaufgaben durch, um mich darauf vorzubereiten und um den Stoff zu wiederholen.
>  
> Ich bin mit der obigen Aufgabe schon länger beschäftigt und komme nicht weiter, bzw. weiß nicht, wie mir der Hinweis helfen soll, die Aufgabe zu lösen.
>  
>
> Zu  a)
>  
> Hier dachte ich mir zuerst, ich zeige die Aussage durch Induktion, aber das macht nicht so viel Sinn, da man per Induktion eine Aussage für alle [mm]n \in \mathbb{N}[/mm] zeigt, oder ? Vielleicht irre ich mich auch, weil es schon spät ist...

Das ist durchaus ein guter Gedanke! Über Z/2Z ist nämlich
(x + [mm] y)^{2^m} [/mm] = [mm] x^{2^m} [/mm] + [mm] y^{2^m}, [/mm] was man mit vollst. Induktion zeigen kann. Das ist übrigens der Frobenius-Automorphismus für endliche Körper.

Wenn man das erstmal hat, kann man bei b) wohl mit dem Eisenstein-Kriterium weiterkommen, indem man t durch t+1 ersetzt und dann a) benutzt.

Gruß
Dieter

Bezug
                
Bezug
t^(2^m)+1 irreduzibel in Q[t]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Mo 09.03.2020
Autor: Boogie2015

Hallo! :-) Tut mir Leid für die späte Antwort, musste heute arbeiten, so dass ich erst jetzt dazu komme, mich mit deiner Antwort zu beschäftigen.

> Das ist durchaus ein guter Gedanke! Über Z/2Z ist nämlich
>  (x + [mm]y)^{2^m}[/mm] = [mm]x^{2^m}[/mm] + [mm]y^{2^m},[/mm] was man mit vollst. Induktion zeigen kann. Das ist übrigens der Frobenius-Automorphismus für endliche Körper.


Ah, stimmt! Vom Frobenius-Automorphismus für endliche Körper habe ich vor Kurzem gelesen.

Ich würde die Induktion so durchführen:



Behauptung
__________

Es gilt die Gleichung $(x + [mm] y)^{2^{m}} [/mm] =  [mm] x^{2^{m}} [/mm] + [mm] y^{2^{m}} [/mm] $ für alle $x, y [mm] \in \mathbb{Z}_{2}, [/mm] m [mm] \in \mathbb{N}$. [/mm]


Induktionsanfang
______________

Sei $m = 0$.

Dann haben wir:

$(x + [mm] y)^{2^{0}} [/mm] = (x + [mm] y)^{1} [/mm] = x + y = [mm] x^{1} [/mm] + [mm] y^{1} [/mm] = [mm] x^{2^{0}} [/mm] + [mm] y^{2^{0}}$ [/mm]


Induktionshypothese
_________________


[mm] $\exists [/mm] m [mm] \in \mathbb{N}: [/mm] (x + [mm] y)^{2^{m}} [/mm] =  [mm] x^{2^{m}} [/mm] + [mm] y^{2^{m}}$ [/mm]


Induktionschritt  m [mm] \mapsro [/mm] m + 1
_____________

Wir wollen zeigen, dass aus der Gleichung $(x + [mm] y)^{2^{m}} [/mm] =  [mm] x^{2^{m}} [/mm] + [mm] y^{2^{m}}$ [/mm]  die Gleichung $(x + [mm] y)^{2^{m + 1}} [/mm] =  [mm] x^{2^{m + 1}} [/mm] + [mm] y^{2^{m + 1}}$ [/mm] folgt.


(x + [mm] y)^{2^{m + 1}} [/mm] = (x + [mm] y)^{2^{m} \cdot 2} [/mm] = $(x + [mm] y)^{2^{m} + 2^{m}} [/mm] = (x + [mm] y)^{2^{m}} \cdot [/mm] (x + [mm] y)^{2^{m}} [/mm] = [mm] \left ( x^{2^{m}} + y^{2^{m}} \right )^{2} [/mm] =  [mm] x^{2^{m} \cdot 2} [/mm]  + [mm] \underbrace{2 x^{2^{m}} y^{2^{m}} }_{ =\; 0\; \text{da}\; x, y \; \in \; \mathbb{Z}_{2}}+ y^{2^{m} \cdot 2} [/mm] = [mm] x^{2^{m + 1}} [/mm] + [mm] y^{2^{m + 1}}$ [/mm]

q.e.d


Passt das so?




An dieser Stelle habe ich eine Frage:

Die Menge [mm] $\mathbb{Z}_{2}$ [/mm] ist eine Menge aus 2 Äquivalenzklassen, also eine Menge von Mengen.

Demnach müssten also die zwei Veränderlichen $x, y$ des Polynoms  $(x + [mm] y)^{2^{m}}$ [/mm] Äquivalenzklassen sein...

Ist das nicht komisch ? Vielleicht verstehe ich das auch falsch.

Wie habe ich das hier zu interpretieren ?




Nun habe ich noch keine so gute Idee, um damit die Aussage in a) zu zeigen.

Ich finde immer noch keinen sinnvollen Weg, um das Polymom und den Binomialkoeffizienten in Verbindung zu bringen...


> Wenn man das erstmal hat, kann man bei b) wohl mit dem Eisenstein-Kriterium weiterkommen, indem man t durch t+1 ersetzt und dann a) benutzt.

Hier habe ich auch kurz eine Frage:

Warum sollte man hier $t$ durch $t + 1$ ersetzen ?



Im Skript steht ein Satz über Lineare Koordinatentransformationen:


Es sei $R$ ein Integritätsbereich, $a [mm] \in R^{\*}$ [/mm] und $b [mm] \in [/mm] R$.

Dann ist dir lineare Koordinatentransformation

[mm] $\psi_{a, b}: [/mm] R[t] [mm] \rightarrow [/mm] R[t], f [mm] \mapsto [/mm] f(at + b)$

ein Ringisomorphismus.

Insbesondere gilt, $f [mm] \in [/mm] R[t]$ ist genau dann irreduzibel, wenn [mm] $\psi_{a, b}(f)$ [/mm] irreduzibel ist.


Hat das etwas mit diesem Satz zu tun ? Falls ja, dann kann ich noch nicht mitreden. Ich muss mir diesen Satz morgen anschauen, damit ich mir über deinen Tipp zur b) sinnvolle Gedanken machen kann!



Ich freue mich auf eine Rückmeldung!

Liebe Grüße,

Boogie


Bezug
                        
Bezug
t^(2^m)+1 irreduzibel in Q[t]: Antwort
Status: (Antwort) fertig Status 
Datum: 07:39 Di 10.03.2020
Autor: statler

Guten Morgen!

> Ich würde die Induktion so durchführen:
>  
>
>
> Behauptung
>  __________
>  
> Es gilt die Gleichung [mm](x + y)^{2^{m}} = x^{2^{m}} + y^{2^{m}}[/mm]
> für alle [mm]x, y \in \mathbb{Z}_{2}, m \in \mathbb{N}[/mm].
>  
>
> Induktionsanfang
>  ______________
>  
> Sei [mm]m = 0[/mm].
>  
> Dann haben wir:
>  
> [mm](x + y)^{2^{0}} = (x + y)^{1} = x + y = x^{1} + y^{1} = x^{2^{0}} + y^{2^{0}}[/mm]
>
>
> Induktionshypothese
>  _________________
>  
>
> [mm]\exists m \in \mathbb{N}: (x + y)^{2^{m}} = x^{2^{m}} + y^{2^{m}}[/mm]
>  
>
> Induktionschritt  m [mm]\mapsto[/mm] m + 1
>  _____________
>  
> Wir wollen zeigen, dass aus der Gleichung [mm](x + y)^{2^{m}} = x^{2^{m}} + y^{2^{m}}[/mm]
>  die Gleichung [mm](x + y)^{2^{m + 1}} = x^{2^{m + 1}} + y^{2^{m + 1}}[/mm]
> folgt.
>  
>
> (x + [mm]y)^{2^{m + 1}}[/mm] = (x + [mm]y)^{2^{m} \cdot 2}[/mm] = [mm](x + y)^{2^{m} + 2^{m}} = (x + y)^{2^{m}} \cdot (x + y)^{2^{m}} = \left ( x^{2^{m}} + y^{2^{m}} \right )^{2} = x^{2^{m} \cdot 2} + \underbrace{2 x^{2^{m}} y^{2^{m}} }_{ =\; 0\; \text{da}\; x, y \; \in \; \mathbb{Z}_{2}}+ y^{2^{m} \cdot 2} = x^{2^{m + 1}} + y^{2^{m + 1}}[/mm]
>
> q.e.d
>  
>
> Passt das so?
>  
> An dieser Stelle habe ich eine Frage:
>  
> Die Menge [mm]\mathbb{Z}_{2}[/mm] ist eine Menge aus 2
> Äquivalenzklassen, also eine Menge von Mengen.
>  
> Demnach müssten also die zwei Veränderlichen [mm]x, y[/mm] des
> Polynoms  [mm](x + y)^{2^{m}}[/mm] Äquivalenzklassen sein...
>
> Ist das nicht komisch ? Vielleicht verstehe ich das auch
> falsch.
>  
> Wie habe ich das hier zu interpretieren ?

Nein, das paßt so noch nicht, weil deine Begründung falsch ist. Der mittlere Term ist 0, weil in Z/2Z 2 = 0 ist, genauer die Restklasse der 2 ist die Restklasse der 0. Du bringst ein Polynom mit der Funktion, die von diesem Polynom induziert wird, durcheinander. Die Funktion kommt natürlich durch Einsetzen zustande. Das x als solches ist kein Element des Ringes.

>
> Nun habe ich noch keine so gute Idee, um damit die Aussage
> in a) zu zeigen.
>  
> Ich finde immer noch keinen sinnvollen Weg, um das Polymom
> und den Binomialkoeffizienten in Verbindung zu bringen...

Aber du bist praktisch fertig! Du hast die Verbindung doch schon selbst über die Formel für die Potenz eines Binoms hergestellt. Werte, die in Z/2Z gleich 0 sind, sind in Z gerade, also durch 2 teilbar.

> > Wenn man das erstmal hat, kann man bei b) wohl mit dem
> Eisenstein-Kriterium weiterkommen, indem man t durch t+1
> ersetzt und dann a) benutzt.
>  
> Hier habe ich auch kurz eine Frage:
>  
> Warum sollte man hier [mm]t[/mm] durch [mm]t + 1[/mm] ersetzen ?

Weil es zielführend ist!

>
> Im Skript steht ein Satz über Lineare
> Koordinatentransformationen:
>  
>
> Es sei [mm]R[/mm] ein Integritätsbereich, [mm]a \in R^{\*}[/mm] und [mm]b \in R[/mm].
>  
> Dann ist dir lineare Koordinatentransformation
>
> [mm]$\psi_{a, b}:[/mm] R[t] [mm]\rightarrow[/mm] R[t], f [mm]\mapsto[/mm] f(at + b)$
>  
> ein Ringisomorphismus.
>  
> Insbesondere gilt, $f [mm]\in[/mm] R[t]$ ist genau dann irreduzibel, wenn [mm]$\psi_{a, b}(f)$[/mm] irreduzibel ist.

Mit a=1 und b=0 bist du mit b) auch fertig!

>
> Ich freue mich auf eine Rückmeldung!
>  

Da ist sie.

Gruß aus HH
Dieter

Bezug
        
Bezug
t^(2^m)+1 irreduzibel in Q[t]: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 So 15.03.2020
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]