www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungtangente und kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - tangente und kurve
tangente und kurve < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

tangente und kurve: rechenweg?
Status: (Frage) beantwortet Status 
Datum: 16:40 Sa 31.03.2007
Autor: slice

hey!
gegeen ist die funktionsschar [mm] fk(x)=e^{k*x} [/mm] mit k > 0

eine teilaufgabe lautet:
die x-achse, der graph von fk, seine tangente in S (die wurde vorher schon ausgerechnet: tk= kx+1 ) und die Gerade mit x=u, u<(-1/k) (das ist die NST der tangente)
begrenzen eine fläce. brechnen sie den inhalt ieser fläche und seinn grenzwert für u gegen - unendlich.

so jetzt hat das lösungsbuch vorgegeben, dass man die fläche von f von 0 bis u berechnen soll und davon danndas dreieck von S, dem Ursprung und der NST von der tangente abziehen soll.
dann geht der flächeninhalt für u gegen - unendlich gegen 1/2k.
wieso kann ich denn aber nicht zuerst die fk(x)-tk rechnen und davon dann den flächeninhalt berechnen?
das macht man doch genauso, wenn man den flächeninhalt zwischen 2 kurven berechnen will?

        
Bezug
tangente und kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Sa 31.03.2007
Autor: Sigrid

Hallo slice,

>  gegeen ist die funktionsschar [mm]fk(x)=e^{k*x}[/mm] mit k > 0

>  
> eine teilaufgabe lautet:
>  die x-achse, der graph von fk, seine tangente in S (die
> wurde vorher schon ausgerechnet: tk= kx+1 ) und die Gerade

Du meinst $ t: y = kx + 1 $

> mit x=u, u<(-1/k) (das ist die NST der tangente)
>  begrenzen eine fläce. brechnen sie den inhalt ieser fläche
> und seinn grenzwert für u gegen - unendlich.
>  
> so jetzt hat das lösungsbuch vorgegeben, dass man die
> fläche von f von 0 bis u berechnen soll und davon danndas
> dreieck von S, dem Ursprung und der NST von der tangente
> abziehen soll.

Da  u<0, ist u die untere Grenze und 0 die obere. Oder du setzt Betragstriche.

>  dann geht der flächeninhalt für u gegen - unendlich gegen
> 1/2k.
>  wieso kann ich denn aber nicht zuerst die fk(x)-tk rechnen
> und davon dann den flächeninhalt berechnen?
>  das macht man doch genauso, wenn man den flächeninhalt
> zwischen 2 kurven berechnen will?

Das kannst du nur für das Intervall $[- [mm] \bruch{1}{k} [/mm] ; 0 ] $ machen, denn nur dieses Flächenstück liegt zwischen der Kurve und der Tangente. Du musst dann zu dieser Fläche dann noch das Integral über [mm] f_k(x) [/mm] von u bis $- [mm] \bruch{1}{k} [/mm] $ addieren.

Der im Lösungsbuch vorgeschlagene Lösungsweg ist aber einfacher.

Gruß
Sigrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]