www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysistaylor polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - taylor polynome
taylor polynome < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

taylor polynome: untersuchung der güte
Status: (Frage) beantwortet Status 
Datum: 19:08 Mo 14.03.2005
Autor: wasting_the_dawn

hallo!
ich weiß, es ist egtl. ein bisschen zu spät, noch mit einer farge zu kommen, aber ich bin gerade am ende meiner facharbeit über taylor-polynome angekommen und stehe nun vor dem problem, der inpliziten anweisung meines lehrers nachzukommen.
er sagte, ich solle erläutern, warum das taylor-polynom die beste näherung auf basis eines polynoms zu einer punktion sei.
dazu habe ich materiula bekommen, dass beweißt, dass eine tangente die beste lineare annäherung ist (was auch einem taylor-p. mit dem grad n=1 entspricht).
wie könnte ich nun den bogen zu meiner fragestellung, warum das t-p. nun in jedem (nicht nur linearen) fall die beste näherung darstellt?

viellicht kennt jemand ein fallbeipiel, in dem eine approximation mithilfes des taylor-polynoms nicht angebracht ist?
ich bin für jede mühe und hilfe dankbar!

viele grüße
sarah

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
taylor polynome: Was heisst "gut"
Status: (Antwort) fertig Status 
Datum: 20:46 Mo 14.03.2005
Autor: leduart

Hallo
>  ich weiß, es ist egtl. ein bisschen zu spät, noch mit
> einer farge zu kommen, aber ich bin gerade am ende meiner
> facharbeit über taylor-polynome angekommen und stehe nun
> vor dem problem, der inpliziten anweisung meines lehrers
> nachzukommen.
>  er sagte, ich solle erläutern, warum das taylor-polynom
> die beste näherung auf basis eines polynoms zu einer
> punktion sei.
>  dazu habe ich materiula bekommen, dass beweißt, dass eine
> tangente die beste lineare annäherung ist (was auch einem
> taylor-p. mit dem grad n=1 entspricht).
>  wie könnte ich nun den bogen zu meiner fragestellung,
> warum das t-p. nun in jedem (nicht nur linearen) fall die
> beste näherung darstellt?

Ich kenn ja dein Material nicht, aber das 2. Taylorpolynom ist fuer die funktion f' wieder das 1. Taylorpolynom. Aber es ist sehr unklar was es heisst, das Beste Naeherungspolynom zu sein.
Man muss diskutieren, ob man Werte, die sehr in der Naehe des Entwicklungspunktes sind moeglichst genau haben will, oder die Funktion in ihrem weiteren Verlauf moeglichst genau kennen will. Ein bekanntes Beispiel wo "gut" oder "bestes" ziemlich sinnlos ist ist [mm] f(x)=e^-\bruch{1}{x^{2}}. [/mm]
bei Null nicht definiert aber leicht durch f(0)=0 stetig zu ergaenzen. Dann sind alle Ableitungen bei 0 0, d.h. jedes Taylorpolynom noch so hohen Grades ist [mm] P_{n}(x)=0! [/mm] Ist das eine gute Naeherung oder nicht?
In manchen Faellen ist das Polynom,das durch einige Punkte geht besser. Viele rational Fkt. (Zaeler und Nenner Polynom werden nur auf kleinen Stuecken gut angenaehert. Schoen waer ein Programm in dem du Funktionen und die entsprechenden Taylorpollynome plottest, und mit Naeherungen durch einige Punkte vergleichst. sin(x), Taylorpolynom um 0 ,2. oder 3.dazu Polynom durch 3 oder 4 bekannte Punkte.
Allerdings kennt man einige Funktionen, von denen an einer Stelle Funktionswert und Ableitungen leicht zu berechnen sind, andere Stellen dagegen schwer. Beispiel [mm] e^{x}, [/mm] bei x=0 alle Ableitungen bekannt=1 alle anderen Stellen nicht. Damit kann man z.Bsp [mm] e=e^{1} [/mm] berechnen!
Ich hoff das hilft weiter
Gruss leduart

>  
> viellicht kennt jemand ein fallbeipiel, in dem eine
> approximation mithilfes des taylor-polynoms nicht
> angebracht ist?
>  ich bin für jede mühe und hilfe dankbar!
>  
> viele grüße
>  sarah
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]