www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTest-Forumtest-anhang
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Test-Forum" - test-anhang
test-anhang < Test-Forum < Internes < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Test-Forum"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

test-anhang: bla
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Sa 14.05.2005
Autor: Loddar

blabla

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
test-anhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Fr 06.01.2006
Autor: Jette87

ich muss das auch mal austesten

Bezug
                
Bezug
test-anhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 Mi 25.01.2006
Autor: MonoTon

15h rechnet der server jetzt schon an dem ding herum?!
wahnsinn. ich würde gerne wissen mit welchem teX-editor man solche riesenformels basteln kann ^^ ich glaube nicht dass diese formel, oder das was es einmal werden soll - in den nächsten paar stunden, ;-) mit dem editor von der page geschrieben wurde. da tippt man sich die finger fusslig.
aber das thema hab ich eh schon gepostet.

na gut-load weiterhin ^^

Bezug
        
Bezug
test-anhang: Riesenformel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:01 So 15.05.2005
Autor: Karl_Pech

[m]\left[ x=-{{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}-3\,a^ 2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{12\,\left({{ \sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}} \right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b }\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{1}\over{3}}}}}}+3\,\sqrt{3}\,a^3\,\left({{ \sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}} \right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}} }\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^ 2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{ 3}}}}}\right)^{{{1}\over{4}}}}}-{{\sqrt{{{12\,\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{ 3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{ a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27 \,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}},x={{\sqrt{-{{\left( 6\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{2}\over{3}}}-3\,a^2\,\left({{\sqrt{27\,a^4-256 \,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}} }+8\,b\right)\,\sqrt{{{12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6 \,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\, \left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{ 2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b} \,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}} +3\,\sqrt{3}\,a^3\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3 }}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27 \,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}}}}}\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{ 3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{ a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27 \,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}}}\right)^{{{1}\over{4}}}}}-{{\sqrt{{{12\,\left({{\sqrt{ 27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{ 2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\, \sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{ \left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{ 2}}\right)^{{{1}\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}},x=- {{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{ 3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}-3\,a^2\,\left({{ \sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}} \right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{12\,\left({{\sqrt{27\,a ^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2 }\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{ 3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{ \sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}} \right)^{{{1}\over{3}}}}}}-3\,\sqrt{3}\,a^3\,\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{ 3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^ 2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}}\over{2\,\sqrt{6}\,\left({{ 12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256 \,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}} }+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+ {{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}\right)^{{{1}\over{4}}}}} +{{\sqrt{{{12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+ {{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\, a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\, \sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}}\over{4\, \sqrt{3}}}+{{a}\over{4}},x={{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4 -256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2 }\over{3}}}-3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{ 3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{ 12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256 \,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}} }+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+ {{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}-3\,\sqrt{3}\,a^3\, \left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{ 2}}\right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}} }\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^ 2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{ 3}}}}}\right)^{{{1}\over{4}}}}}+{{\sqrt{{{12\,\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{ 3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{ a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27 \,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}} \right][/m]

Bezug
        
Bezug
test-anhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 So 15.05.2005
Autor: Karl_Pech


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Test-Forum"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]