www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpertest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - test
test < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

test: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Di 16.10.2012
Autor: snikch

Aufgabe
"... We need only assume that K is a conjugacy class of p-elements of G, any two elements of K generate a p-subgroup, and K [mm] \not \subseteq O_p(G), [/mm] and derive a contradiction.
Let P be any Sylow p-subgroup of G. Then since <K> is not a p-group, K [mm] \not \subseteq [/mm] P.   ..."

G bezeichnet die Gruppe
[mm] O_p(G) [/mm] bezeichnet die größte normale p-Gruppe von G.


Hallo ich habe ein Problem mit obigem Text.
Woran liegt es denn das <K> keine p-Gruppe ist?
Für jeden Anstoß bin ich dankbar!

mfg


        
Bezug
test: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 17.10.2012
Autor: felixf

Moin!

> "... We need only assume that K is a conjugacy class of
> p-elements of G, any two elements of K generate a
> p-subgroup, and K [mm]\not \subseteq O_p(G),[/mm] and derive a
> contradiction.
>  Let P be any Sylow p-subgroup of G. Then since <K> is not

> a p-group, K [mm]\not \subseteq[/mm] P.   ..."
>  
> G bezeichnet die Gruppe
>  [mm]O_p(G)[/mm] bezeichnet die größte normale p-Gruppe von G.
>  Hallo ich habe ein Problem mit obigem Text.
>  Woran liegt es denn das <K> keine p-Gruppe ist?

>  Für jeden Anstoß bin ich dankbar!

Wenn mich nicht alles tauescht, ist [mm] $\langle [/mm] K [mm] \rangle$ [/mm] immer ein Normalteiler, wenn $K$ eine Konjugationsklasse ist: jedes Element ist ja ein Produkt aus Konjugierten von einem festen Element und deren Inversen. Konjugiert man ein solches Produkt, sind die Faktoren immer noch Konjugierte von dem festen Element bzw. Inverse davon. (Die Konjugationsabbildung ist ja ein Homomorphismus.)

Wenn also [mm] $\langle [/mm] K [mm] \rangle$ [/mm] eine $p$-Gruppe waer, so muesste [mm] $\langle [/mm] K [mm] \rangle \subseteq O_p(G)$ [/mm] sein und insbesondere $K [mm] \subseteq O_p(G)$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]