www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigestrig. Rechenformel Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - trig. Rechenformel Beweis
trig. Rechenformel Beweis < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

trig. Rechenformel Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 So 03.08.2008
Autor: tedd

Aufgabe
Beweisen Sie folgende trigonometrische Rechenformel:
[mm] sin(arccos(x))=\sqrt{1-x^2} [/mm]


Bin mir nicht sicher ob das als Beweis genügt:

[mm] sin(arccos(x))=\sqrt{1-x^2} [/mm]
[mm] arccos(x)=arcsin(\sqrt{1-x^2}) [/mm]
[mm] x=cos(arcsin((\sqrt{1-x^2}))) [/mm]
und wenn ich das dann wieder in die Urprungsfunktion auf der linken Seite einsetze:

[mm] sin(arccos(cos(arcsin(\sqrt{1-x^2}))))=\sqrt{1-x^2} [/mm]
[mm] \sqrt{1-x^2}=\sqrt{1-x^2} [/mm]

Also genügt das und/oder gibt es noch einen "eindeutigeren" Beweis?
Danke und besten Gruß,
tedd ;)

        
Bezug
trig. Rechenformel Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 So 03.08.2008
Autor: MathePower

Hallo tedd,

> Beweisen Sie folgende trigonometrische Rechenformel:
>  [mm]sin(arccos(x))=\sqrt{1-x^2}[/mm]
>  
>
> Bin mir nicht sicher ob das als Beweis genügt:
>  
> [mm]sin(arccos(x))=\sqrt{1-x^2}[/mm]
>  [mm]arccos(x)=arcsin(\sqrt{1-x^2})[/mm]
>  [mm]x=cos(arcsin((\sqrt{1-x^2})))[/mm]
>  und wenn ich das dann wieder in die Urprungsfunktion auf
> der linken Seite einsetze:
>  
> [mm]sin(arccos(cos(arcsin(\sqrt{1-x^2}))))=\sqrt{1-x^2}[/mm]
>  [mm]\sqrt{1-x^2}=\sqrt{1-x^2}[/mm]
>  
> Also genügt das und/oder gibt es noch einen "eindeutigeren"
> Beweis?

Verwende doch den trigonometrischen Pythagoras:

[mm]\sin^{2}\left(z\right)+\cos^{2}\left(z\right)=1[/mm]

Drücke den Sinus also mit Hilfe des Cosinus aus.

Dann steht das im Endeffekt schon da.


>  Danke und besten Gruß,
>  tedd ;)


Gruß
MathePower

Bezug
                
Bezug
trig. Rechenformel Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 03.08.2008
Autor: tedd

Aye danke für die schnelle Antwort MathePower :)

[mm] sin^2(x)=1-cos^2(x) [/mm]
[mm] sin(x)=\sqrt{1-cos^2(x)} [/mm]

[mm] \sqrt{1-cos^2(arccos(x))}=\sqrt{1-x^2} [/mm]
[mm] \sqrt{1-x^2}=\sqrt{1-x^2} [/mm]

hoffe so ists richtig...

Bezug
                        
Bezug
trig. Rechenformel Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 So 03.08.2008
Autor: MathePower

Hallo tedd,

> Aye danke für die schnelle Antwort MathePower :)
>  
> [mm]sin^2(x)=1-cos^2(x)[/mm]
>  [mm]sin(x)=\sqrt{1-cos^2(x)}[/mm]
>  


Ich mach das  so:

[mm]\sin\left(\arccos\left(x\right)\right)=\wurzel{1-\cos^{2}\left(\arccos\left(x\right)\right)}=\wurzel{1-x^{2}}[/mm]


> [mm]\sqrt{1-cos^2(arccos(x))}=\sqrt{1-x^2}[/mm]
>  [mm]\sqrt{1-x^2}=\sqrt{1-x^2}[/mm]
>  
> hoffe so ists richtig...


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]