www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikumformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - umformung
umformung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 So 14.09.2008
Autor: sie-nuss

Hi alle,

ich hab Probleme mit zwei Umformungen:

Erstens:

P [mm] \{-\bruch{\varepsilon}{2+\varepsilon}X \le Y-X \le \bruch{\varepsilon}{2}X\} \ge [/mm] P [mm] \{ |Y-X| \le \bruch{\varepsilon}{3}X\} [/mm]

Wieso ist das so, dass die Wahrscheinlichkeit kleiner ist wenn man den Betrag nimmt, und wo kommt das [mm] \bruch{\varepsilon}{3} [/mm] am Ende her?

Zweitens:

Wenn [mm] m\ge37\varepsilon^{-2}n^{2} [/mm] und [mm] 0<\varepsilon<1 [/mm] dann gilt [mm] (1+\bruch{n}{m})^{n}-1 \le \bruch{\varepsilon^{2}}{36} [/mm]


Ich wär total dankbar wenn mir das jemand erklären könnte :)

Viele Grüße und vielen Dank!
sie-nuss




        
Bezug
umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 So 14.09.2008
Autor: Somebody


> Hi alle,
>
> ich hab Probleme mit zwei Umformungen:
>  
> Erstens:
>  
> P [mm]\{-\bruch{\varepsilon}{2+\varepsilon}X \le Y-X \le \bruch{\varepsilon}{2}X\} \red{\ge}[/mm] P[mm]\{ |Y-X| \le \bruch{\varepsilon}{3}X\}[/mm]
>  
> Wieso ist das so, dass die Wahrscheinlichkeit kleiner ist
> wenn man den Betrag nimmt, und wo kommt das
> [mm]\bruch{\varepsilon}{3}[/mm] am Ende her?

Ich gehe einmal von [mm] $X\geq [/mm] 0$ und [mm] $\varepsilon \in [/mm] ]0;1]$ aus. Dann gilt doch, wegen [mm] $\blue{-\frac{\varepsilon}{2+\varepsilon}X}\leq -\frac{\varepsilon}{2+1}X=\red{-\frac{\varepsilon}{3}X}$ [/mm] und [mm] $\blue{\frac{\varepsilon}{3}X}< \red{\frac{\varepsilon}{2}X}$, [/mm] dass [mm] $\blue{[-\varepsilon/(\varepsilon+2);\varepsilon/2]}\;\supseteq \; \red{[-\varepsilon/3;\varepsilon/3]}$ [/mm] und daher:

[mm]\{\blue{-\bruch{\varepsilon}{2+\varepsilon}X} \le Y-X \le \blue{\bruch{\varepsilon}{2}X}\}\; \supseteq\; \{\red{-\bruch{\varepsilon}{3}X}\leq Y-X\leq \red{\bruch{\varepsilon}{3}X}\}\;=\;\{|Y-X|\leq \bruch{\varepsilon}{3}X\}[/mm]

woraus die entsprechende Ungleichung für die Wahrscheinlichkeiten dieser Ereignisse folgt.

>  
> Zweitens:
>  
> Wenn [mm]m\blue{\ge}37\varepsilon^{-2}n^{2}[/mm] und [mm]0<\varepsilon<1[/mm] dann
> gilt [mm](1+\bruch{n}{m})^{n}-1 \red{\le} \bruch{\varepsilon^{2}}{36}[/mm]

Verstehe ich im Moment auch nicht. Ich hätte eher gedacht, dass man die []Bernoullische Ungleichung angewandt auf [mm] $(1+\bruch{n}{m})^n$ [/mm] so einsetzen könnte:

[mm](1+\bruch{n}{m})^{n}-1 \; \red{\leq} \; 1+n\cdot \frac{n}{m}-1 \; \blue{\leq} \; n\cdot \frac{n}{37\varepsilon^{-2}n^{2}} \;=\; \frac{\varepsilon^2}{37}\;<\;\frac{\varepsilon^2}{36}[/mm]


Aber, wie Du siehst, ist hier die Abschätzung anders herum als in Deiner Fragestellung. Effektiv kann man leicht Gegenbeispiele zu Deiner Ungleichung angeben. Etwa [mm] $\varepsilon [/mm] := 0.5$, $n := 2$ und $m := [mm] 37\cdot \varepsilon^{-2}n^2$. [/mm]

Bezug
                
Bezug
umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 16.09.2008
Autor: sie-nuss

Hallo somebody,

vielen Dank für die Antwort. Ich hab nicht verstanden, warum du sagst , die zweite Umformung hast du irgendwie anders gelöst als in der Fragestellung. Es stimmt doch alles...! oder?

Also vielen vielen Dank für die Hilfe!

Grüße,

sie-nuss

Bezug
                        
Bezug
umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:12 Mi 17.09.2008
Autor: Somebody


> Hallo somebody,
>
> vielen Dank für die Antwort. Ich hab nicht verstanden,
> warum du sagst , die zweite Umformung hast du irgendwie
> anders gelöst als in der Fragestellung. Es stimmt doch
> alles...! oder?

Ich scheine in der Tat aus irgend einem Grunde verwirrt gewesen zu sein. Ich hätte schwören können, das Ungleichheitszeichen sei andersherum gerichtet gewesen. - Na, umso besser, wenn sich für Dich alles in Wohlgefallen aufgelöst hat.

Bezug
                                
Bezug
umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Mi 17.09.2008
Autor: sie-nuss

--genau! also vielen Dank nochmal!

sie-nuss

Bezug
                
Bezug
umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:34 Do 30.10.2008
Autor: sie-nuss

Hallo,

ich hab doch noch ne Frage: Bernoulli sagt doch [mm] (1+x)^n \ge(1+xn). [/mm] Aber so wies aussieht hast du doch diese Ungleichung mit kleinergleich benutzt oder???

WIe immer freue ich mich über helfende Antworten :)

Grüße!

sie-nuss

Bezug
                        
Bezug
umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Do 30.10.2008
Autor: angela.h.b.


> ich hab doch noch ne Frage: Bernoulli sagt doch [mm](1+x)^n \ge(1+xn).[/mm]
> Aber so wies aussieht hast du doch diese Ungleichung mit
> kleinergleich benutzt oder???

Hallo,

ja, das scheint mir wirklich ein Fehler zu sein.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]