www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationuneigentliches Doppelintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - uneigentliches Doppelintegral
uneigentliches Doppelintegral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches Doppelintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 03.06.2010
Autor: LordPippin

Hallo,
ich soll folgendes uneigentliche Doppelintegral

[mm] \integral_{-\infty}^{\infty}\integral_{-\infty}^{\infty} e^{-a(x^2+y^2)} [/mm] dx dy

berechnen.
Ich bin für die Berechnung zu Polarkoordinaten übergegangen. Ich habe jetzt aber irgendwie Schwierigkeiten mit den neuen Grenzen des Integrals. Für dr habe ich die Grenzen 0 - [mm] \infty [/mm] und für [mm] d\gamma [/mm] würde ich sagen 0 - [mm] \pi, [/mm] allerdings ist 0 - [mm] 2\pi [/mm] richtig. Wie kommt man auf die [mm] 2\pi? [/mm]

Danke im Voraus

        
Bezug
uneigentliches Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Do 03.06.2010
Autor: MathePower

Hallo LordPippin,

> Hallo,
>  ich soll folgendes uneigentliche Doppelintegral
>
> [mm]\integral_{-\infty}^{\infty}\integral_{-\infty}^{\infty} e^{-a(x^2+y^2)}[/mm]
> dx dy
>  
> berechnen.
>  Ich bin für die Berechnung zu Polarkoordinaten
> übergegangen. Ich habe jetzt aber irgendwie
> Schwierigkeiten mit den neuen Grenzen des Integrals. Für
> dr habe ich die Grenzen 0 - [mm]\infty[/mm] und für [mm]d\gamma[/mm] würde
> ich sagen 0 - [mm]\pi,[/mm] allerdings ist 0 - [mm]2\pi[/mm] richtig. Wie
> kommt man auf die [mm]2\pi?[/mm]


Der Integrationsbereich erstreckt sich über ganz [mm]\IR^{2}[/mm]

Somit nehmen x und y alle reellen Zahlen, auch negative.

Da hier Polarkoordinaten verwendet wurden und der Radius r
stets größer oder gleich Null ist, ergibt sich daß die trigonometrischen
Funktionen Sinus und Cosinus sowohl positive als auch negative Werte
annehmen können.

Dies ist genau für den Vollkreis der Fall,
der einen Umfangswinkel von [mm]2\pi[/mm] besitzt.


>  
> Danke im Voraus



Gruss
MathePower

Bezug
                
Bezug
uneigentliches Doppelintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Do 03.06.2010
Autor: LordPippin

Vielen Dank MathePower.
Mir ist das im Moment aber immer noch nicht sooo klar...
Wenn ich die Grenzen für x von 0 bis [mm] \infty [/mm] hätte, hätte ich dann für [mm] \gamma [/mm] die Grenzen von 0 - [mm] \pi? [/mm] Und wenn ich von [mm] -\infty [/mm] bis 0 hätte, hätte ich dann die Grenzen [mm] -\pi [/mm] bis 0?
Kann ich auch über die Beziehung [mm] y=r*sin(\gamma) (\gamma=(\bruch{x}{r}) [/mm] an die "neuen" Grenzen kommen?> Hallo LordPippin,


Bezug
                        
Bezug
uneigentliches Doppelintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Do 03.06.2010
Autor: leduart

Hallo
Man lern nix, was man nicht selbst gemacht hat. nimm ein paar Punkte mit x>0 y mal pos, mal neg. welche Winkel kommen vor?
jetzt x<0
Da man aber [mm] \phi=0 [/mm] irgendwo setzen kann, gibts keine eindeutige antwort, es sei denn man nimmt wie meist üblich [mm] \phi=0 [/mm] auf dr pos. x- Achse.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]