www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationuneigentliches integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - uneigentliches integral
uneigentliches integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches integral: richtig?
Status: (Frage) beantwortet Status 
Datum: 19:56 So 27.01.2008
Autor: Luke1986

Aufgabe
[mm] \integral_{0}^{\bruch{\pi}{4}} \bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} } dx [/mm]

ich habe das ganze so versucht:

kritische Stelle: [mm] x=0 [/mm]
  
Heuristik: fuer   [mm] x\to[/mm]  [mm] 0 [/mm]
     [mm] \bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} } \simeq \bruch{x^{\bruch{1}{3}}*1}{x^2*x^{\bruch{1}{3}}} \simeq \bruch{1}{x^2} [/mm]

[mm] \Rightarrow [/mm] vermutung: konvergent

Also wende Majorantenkrit an:
  [mm] \left| f(x) \right| [/mm] = [mm] \bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} } [/mm]                       mit [mm] 0
mit dem Mittelwertsatz habe ich abgeschätzt:

[mm] [mm] sinx^{\bruch{1}{3}} \ge cos{\bruch{\pi}{4}}*x^{\bruch{1}{3}} [/mm]
[mm] e^{-x} \le [/mm] 1

[mm] \le \bruch{(tan^{4}x)^{\bruch{1}{3}}*1}{x^2*cos{\bruch{\pi}{4}}*x^{\bruch{1}{3}}} [/mm]
es gilt: [mm] \bruch{tanx}{x} [/mm] = 1 für x [mm] \to [/mm] 0

[mm] \le \bruch{{(\bruch{tan^{4}x}{x})^{\bruch{1}{3}}}*x^{\bruch{1}{3}}}{{x^2*cos{\bruch{\pi}{4}}*x^{\bruch{1}{3}}}} [/mm]

ein therm gegen 1 das [mm] x^{\bruch{1}{3}} [/mm] kürzt sich weg  dann hab ich im prinzip noch [mm] \bruch{1}{x^2} [/mm] und eine Konstante die in Bezug auf die Konvergenz vernachlässigt werden kann.
[mm] \bruch{1}{x^2} [/mm] ist eine standartmajorante und KOnvergent...
ich bin mir aber nicht sicher ob ich das so machen kann???

gruß Lukas

        
Bezug
uneigentliches integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 27.01.2008
Autor: Somebody


> [mm][mm]\integral_{0}^{\bruch{\pi}{4}} \bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} }[/mm] dx [mm][/mm][/mm]

ich habe das ganze so versucht:

kritische Stelle: [mm]x=0[/mm]
  
Heuristik: fuer   [mm]x\to[/mm]  [mm]0[/mm]
[mm]\bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} } \simeq \bruch{x^{\bruch{1}{3}}*1}{x^2*x^{\bruch{1}{3}}} \simeq \bruch{1}{x^2}[/mm]

[mm]\Rightarrow[/mm] vermutung: konvergent

Kann ich nicht glauben, denn in erster Näherung, für [mm] $x\rightarrow [/mm] 0+$, ist ja sowohl [mm] $\tan(x)=x+o(x)$ [/mm] als auch und [mm] $\sin(x)=x+o(x)$ [/mm] (d.h. beide sind in erster Näherung linear in $x$). Der Faktor [mm] $e^{-x}$ [/mm] ist für die Konvergenz wegen [mm] $\lim_{x\rightarrow 0+}e^{-x}=1$ [/mm] für die Frage der Konvergenz dieses Integrals an der unteren Grenze $0$ ganz unerheblich. Was dann noch bleibt hat die Form [mm] $\frac{(x+o(x))^{4/3}}{x^2\cdot (x+o(x))^{1/3}}=\frac{x^{4/3}\cdot(1+o(1))^{4/3}}{x^2\cdot x^{1/3}\cdot(1+o(1))^{1/3}]}=\frac{1}{x}\cdot (1+o(1))^2$. [/mm] Das heisst: Dein Integrand verhält sich für den Grenzübergang [mm] $x\rightarrow [/mm] 0+$ asymptotisch wie [mm] $\frac{1}{x}$. [/mm] Aber das Integral [mm] $\int_0^b\frac{1}{x}\;dx$ [/mm] existiert an der unteren Grenze nicht: also würde ich behaupten wollen, dass Dein Integral (an der unteren Grenze) gegen [mm] $+\infty$ [/mm] divergiert.


Bezug
        
Bezug
uneigentliches integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 So 27.01.2008
Autor: leduart

Hallo
Zusätzlich zu somebody
Warum ist [mm] 1/x^2 [/mm] eine konvergente Majorante? doch wohl für x gegen [mm] \infty, [/mm] nicht für x gegen 0!
(aber [mm] 1/x^2 [/mm] ist ja eh falsch.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]