www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieunendlich abzäh. SigmaAlgebren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - unendlich abzäh. SigmaAlgebren
unendlich abzäh. SigmaAlgebren < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendlich abzäh. SigmaAlgebren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mi 04.07.2012
Autor: chara18

Aufgabe
Gibt es unendlich abzählbare Sigma-Algebren?Begründen Sie Ihre Antwort.

Meine Lösung:
Annahme E abzählbar, sigma-Algebra A endlich.
[mm] \forall [/mm] x /in E (A sei sigma-Algebra über E).
Betrachte     Bx:= [mm] \bigcap_{B/in A, x /in B}^{ } [/mm] B

Bx abzählbar => Bx [mm] \subset [/mm] A

=> # von Bx abzähönar-

Für x [mm] \not= [/mm] x' gilt. Bx= Bx' oder Bx [mm] \bigcap_{ }^{ } [/mm] Bx'= leere Menge


Widerspruch zur Annahme endlich vieler verschiederner B

P({Bx: x /in E }  [mm] \subset [/mm] A.   Aber :

P ({Bx: x /in E}) überabzählbar!

=> A überabzählbar



Ist die Lösung denn richtig??



Bx abzählbar => Bx [mm] \subset [/mm] A
Diese Annahme verstehe nicht ganz, ist sie denn richtig ???

        
Bezug
unendlich abzäh. SigmaAlgebren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Mi 04.07.2012
Autor: fred97


> Gibt es unendlich abzählbare Sigma-Algebren?Begründen Sie
> Ihre Antwort.
>  Meine Lösung:
> Annahme E abzählbar, sigma-Algebra A endlich.
>  [mm]\forall[/mm] x /in E (A sei sigma-Algebra über E).

Du nimmst also an, dass die Grundmenge E abzählbar ist und A eine endliche [mm] \sigma [/mm] - Algebra über E ist.

Wie kommst Du auf so was ?




>  Betrachte     Bx:= [mm]\bigcap_{B/in A, x /in B}^{ }[/mm] B
>  
> Bx abzählbar => Bx [mm]\subset[/mm] A

Wieso ?


>  
> => # von Bx abzähönar-

Was steht da ?


>  
> Für x [mm]\not=[/mm] x' gilt. Bx= Bx' oder Bx [mm]\bigcap_{ }^{ }[/mm] Bx'=
> leere Menge

Wieso ?


>  
>
> Widerspruch zur Annahme endlich vieler verschiederner B

Was ist los ?


>  
> P({Bx: x /in E }  [mm]\subset[/mm] A.   Aber :
>  
> P ({Bx: x /in E}) überabzählbar!

Da komm ich nicht mehr mit !


>  
> => A überabzählbar
>  
>
>
> Ist die Lösung denn richtig??

Nein

FRED

>  
>
>
> Bx abzählbar => Bx [mm]\subset[/mm] A
>  Diese Annahme verstehe nicht ganz, ist sie denn richtig
> ???


Bezug
                
Bezug
unendlich abzäh. SigmaAlgebren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Mi 04.07.2012
Autor: chara18

hmm da solllte abzählbar heißen. Wie ist die Aufgabe richtig, ich komme auf keinen anderen ANsatz, könntest du mir bitte helfen :(

GRuss


Bezug
                        
Bezug
unendlich abzäh. SigmaAlgebren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Mi 04.07.2012
Autor: fred97

Schau mal hier:

https://matheraum.de/read?t=891135

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]