www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenunendliche Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - unendliche Reihe
unendliche Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendliche Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Mi 06.12.2006
Autor: phys1kAueR

Aufgabe
Zeigen Sie das folgende Reihe die angegegebene Summe hat:
[mm] \summe_{=1}^{\infty}\bruch{1}{n*(n+1)(n+2)}=\bruch{1}{4} [/mm]

Ich habe mittels PBZ folgendes erhalten:
[mm] \bruch{1}{2n}-\bruch{1}{n+1}+\bruch{1}{2(n+2)} [/mm]

Ich habe außerdem festgestellt, das sich die ungeraden glieder von [mm] -\bruch{1}{n+1} [/mm] mit [mm] \bruch{1}{2n}- [/mm] zu Null addieren, leider hat mir das bis jetzt noch nicht genützt. ;(

Bitte helft mir!

grüße

phys1kauer

        
Bezug
unendliche Reihe: zerlegen
Status: (Antwort) fertig Status 
Datum: 14:57 Mi 06.12.2006
Autor: Loddar

Hallo phys1kAueR!


Zerlege das Ergebnis Deiner Partiabruchzerlegung noch weiter:

[mm] $\bruch{1}{2*n}-\bruch{1}{n+1}+\bruch{1}{2*(n+2)}$ [/mm]

$= \ [mm] \bruch{1}{2*n}-\bruch{2}{2*(n+1)}+\bruch{1}{2*(n+2)}$ [/mm]

$= \ [mm] \bruch{1}{2}*\left(\bruch{1}{n}-\bruch{1+1}{n+1}+\bruch{1}{n+2}\right)$ [/mm]

$= \ [mm] \bruch{1}{2}*\left(\bruch{1}{n}-\bruch{1}{n+1}-\bruch{1}{n+1}+\bruch{1}{n+2}\right)$ [/mm]

$= \ [mm] \bruch{1}{2}*\left(\red{\bruch{1}{n}-\bruch{1}{n+1}} \ + \ \blue{\bruch{1}{n+2}-\bruch{1}{n+1}}\right) [/mm] $


Erkennst Du nun die beiden Teleskopsummen?


Gruß
Loddar


Bezug
                
Bezug
unendliche Reihe: Richtig aufgeschrieben?
Status: (Frage) überfällig Status 
Datum: 19:47 Mi 06.12.2006
Autor: phys1kAueR

Danke für deinen Hinweis, jetzt hab ich's hinbekommen. Kannst du bitte mal einen kurzen Blick riskieren, ob ich alles mathematisch exakt genau aufgeschrieben hab?!

[mm] \bruch{1}{2}\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}(\bruch{1}{n}-\bruch{1}{n+1}+\bruch{1}{n+2}-\bruch{1}{n+1})=\bruch{1}{2}\limes_{n\rightarrow\infty}[\summe_{n=1}^{\infty}(\bruch{1}{n}-\bruch{1}{n+1})+\summe_{n=1}^{\infty}(\bruch{1}{n+2}-\bruch{1}{n+1})] [/mm]

Damit ich die Teleskopsummen besser sehe führe ich einen weiteren Summationsindex m ein:

[mm] \bruch{1}{2}[\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}(\bruch{1}{n}-\bruch{1}{n+1}+\limes_{m\rightarrow\infty}\summe_{m=3}^{\infty}(\bruch{1}{m}-\bruch{1}{m-1})] [/mm]

[mm] \bruch{1}{2}[\limes_{n\rightarrow\infty}(\bruch{1}{n}-\bruch{1}{n+1}+\limes_{m\rightarrow\infty}(\bruch{1}{m}-\bruch{1}{m-1})] [/mm]

[mm] \bruch{1}{2}[1-\limes_{n\rightarrow\infty}(\bruch{1}{n+1})+\limes_{m\rightarrow\infty}(\bruch{1}{m})-\bruch{1}{2}] [/mm]

[mm] \bruch{1}{2}[1-\bruch{1}{2}]=\bruch{1}{4} [/mm]


Danke

Phys1kauer

P.S: Kannst du nochmal einen Blick in meinen anderen Thread werfen (https://matheraum.de/read?t=205618). Da komme ich nicht weiter.

Bezug
                        
Bezug
unendliche Reihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 08.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]