www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationunendliche reihe ableiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - unendliche reihe ableiten
unendliche reihe ableiten < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendliche reihe ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mi 09.06.2010
Autor: hawkingfan

Aufgabe
Ist
[mm] \bruch{d}{dx}\summe_{i=1}^{\infty}f(x)=\summe_{i=1}^{\infty}\bruch{d}{dx}f(x)? [/mm]

Eine ganz blöde Frage: Kann man die Regel
(f+g)´=f´+g´ auch bei einer unendlichen Summen von Funktionen anwenden?
Müsste ja eigentlich gehen, denn es gilt:

[mm] \bruch{d}{dx}\summe_{i=1}^{\infty}f(x)=\bruch{d}{dx}\limes_{n\rightarrow\infty}\summe_{i=1}^{n}f(x)=\limes_{n\rightarrow\infty}\bruch{d}{dx}\summe_{i=1}^{n}f(x)=\limes_{n\rightarrow\infty}\summe_{i=1}^{n}\bruch{d}{dx}f(x)=\summe_{i=1}^{\infty}\bruch{d}{dx}f(x) [/mm]

        
Bezug
unendliche reihe ableiten: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 16:42 Mi 09.06.2010
Autor: M.Rex

Hallo
Ja, du darfst das so tun.
Es gilt:
[mm] \left(\summe_{i=1}^{n}f_{i}(x)\right)^{'}=\summe_{i=1}^{n}f_{i}'(x) [/mm]

Und ob n nun fest ist, oder gegen [mm] \infty [/mm] läuft, ist erstmal egal.

Voraussetzung ist natürlich, dass jedes [mm] f_{i}(x) [/mm] mindestens einmal differenzierbar ist.

Marius

Bezug
                
Bezug
unendliche reihe ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Mi 09.06.2010
Autor: hawkingfan

Danke.
(Du hast natürlich Recht, ich habe mich die ganze Zeit vertippt: Ich wollte natürlich immer [mm] f_{i}, [/mm] statt f

Bezug
                
Bezug
unendliche reihe ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Mi 09.06.2010
Autor: fred97


> Hallo
>  Ja, du darfst das so tun.


Nein, das darf man i.a. nicht

               https://matheraum.de/read?i=691310

FRED


>  Es gilt:
>  
> [mm]\left(\summe_{i=1}^{n}f_{i}(x)\right)^{'}=\summe_{i=1}^{n}f_{i}'(x)[/mm]
>  
> Und ob n nun fest ist, oder gegen [mm]\infty[/mm] läuft, ist
> erstmal egal.
>  
> Voraussetzung ist natürlich, dass jedes [mm]f_{i}(x)[/mm]
> mindestens einmal differenzierbar ist.
>  
> Marius


Bezug
                
Bezug
unendliche reihe ableiten: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 17:27 Mi 09.06.2010
Autor: fred97


> Hallo
>  Ja, du darfst das so tun.

Nein, das darf man i.a. nicht:  https://matheraum.de/read?i=691310


FRED


>  Es gilt:
>  
> [mm]\left(\summe_{i=1}^{n}f_{i}(x)\right)^{'}=\summe_{i=1}^{n}f_{i}'(x)[/mm]
>  
> Und ob n nun fest ist, oder gegen [mm]\infty[/mm] läuft, ist
> erstmal egal.
>  
> Voraussetzung ist natürlich, dass jedes [mm]f_{i}(x)[/mm]
> mindestens einmal differenzierbar ist.
>  
> Marius


Bezug
        
Bezug
unendliche reihe ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 09.06.2010
Autor: fred97


> Ist
>  
> [mm]\bruch{d}{dx}\summe_{i=1}^{\infty}f(x)=\summe_{i=1}^{\infty}\bruch{d}{dx}f(x)?[/mm]
>  Eine ganz blöde Frage: Kann man die Regel
>  (f+g)´=f´+g´ auch bei einer unendlichen Summen von
> Funktionen anwenden?




Nein ! Im allg. gilt das nicht. Schöne Gegenbeispiele findet man in jedem Analysisbuch (z.B. H. Heuser: Lehrbuch der Analysis, Teil 1, §102)

FRED

>  Müsste ja eigentlich gehen, denn es gilt:
>  
> [mm]\bruch{d}{dx}\summe_{i=1}^{\infty}f(x)=\bruch{d}{dx}\limes_{n\rightarrow\infty}\summe_{i=1}^{n}f(x)=\limes_{n\rightarrow\infty}\bruch{d}{dx}\summe_{i=1}^{n}f(x)=\limes_{n\rightarrow\infty}\summe_{i=1}^{n}\bruch{d}{dx}f(x)=\summe_{i=1}^{\infty}\bruch{d}{dx}f(x)[/mm]
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]