www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemeunterbestimmte gleichungssyste
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - unterbestimmte gleichungssyste
unterbestimmte gleichungssyste < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unterbestimmte gleichungssyste: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:31 So 08.12.2013
Autor: arbeitsamt

Aufgabe
Berechnen Sie die Lösungsmengen

[mm] \pmat{ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 2 & 4 & 6 }x= \vektor{1 \\ -3 \\ 4} [/mm]


[mm] \vmat{ 1 & 2 & 3 & 4 = 1 \\ 5 & 6 & 7 & 8 = -3 \\ 0 & 2 & 4 & 6 = 4} [/mm]

1 Zeile * (-5)+ 2 zeile:


[mm] \vmat{ 1&2&3&4 = 1 \\ 0 &-4 &-8 &-12 =-8 \\ 0& 2 & 4 & 6 = 4} [/mm]

2 zeile * [mm] \bruch{1}{2} [/mm] + 1 zeile

[mm] \vmat{ 1 & 0 & -1 & -2 = -3 \\ 0 & -4 & -8 & -12 = -8 \\ 0 & 2 & 4 & 6 = 4} [/mm]

--------------------------------------------------------------------

III:    [mm] 2x_2 [/mm] + [mm] 4x_3 [/mm] + [mm] 6x_4 [/mm] = 4

[mm] \Rightarrow x_4= \bruch{2}{3} [/mm] - [mm] \bruch{x_2}{3} [/mm] - [mm] \bruch{2x_3}{3} [/mm]

[mm] x_2=s, x_3=t \Rightarrow x_4= \bruch{2}{3} [/mm] - [mm] \bruch{s}{3} [/mm] - [mm] \bruch{2t}{3} [/mm]


[mm] x_4 [/mm] in I einsetzen:


[mm] x_1- x_3-2(\bruch{2}{3} [/mm] - [mm] \bruch{x_2}{3} [/mm] - [mm] \bruch{2x_3}{3}) [/mm] =-3

[mm] x_1= -5-2x_2-x_3 [/mm]

[mm] x_1= [/mm] -5-2s-t



[mm] x_4 [/mm] in II einsetzen:

[mm] -4(\bruch{2}{3} [/mm] - [mm] \bruch{x_2}{3} [/mm] - [mm] \bruch{2x_3}{3}) -8x_3-12x_4 [/mm] = -8

[mm] 4x_2-16x_3-36x_4=16 [/mm]

[mm] x_2-4x_3-9x_4=4 [/mm]

[mm] x_2= 4+4x_3+9x_4 [/mm]

[mm] x_2= 4+4x_3+9(\bruch{2}{3} [/mm] - [mm] \bruch{x_2}{3} [/mm] - [mm] \bruch{2x_3}{3}) [/mm]

[mm] x_2= 4+4x_3+6 -3x_2-6x_3 [/mm]

[mm] x_2=\bruch{5}{2}-2x_3= \bruch{5}{2}-2t [/mm]

ist das soweit erstmal richtig?


        
Bezug
unterbestimmte gleichungssyste: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 So 08.12.2013
Autor: M.Rex


> Berechnen Sie die Lösungsmengen

>

> [mm]\pmat{ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 2 & 4 & 6 }x= \vektor{1 \\ -3 \\ 4}[/mm]

>

> [mm]\vmat{ 1 & 2 & 3 & 4 = 1 \\ 5 & 6 & 7 & 8 = -3 \\ 0 & 2 & 4 & 6 = 4}[/mm]

>

> 1 Zeile * (-5)+ 2 zeile:

>
>

> [mm]\vmat{ 1&2&3&4 = 1 \\ 0 &-4 &-8 &-12 =-8 \\ 0& 2 & 4 & 6 = 4}[/mm]

Bis hier passt alles

Außerdem würde ich jetzt erstmal II:4 und III:2 rechnen
[mm]\vmat{ 1&2&3&4 = 1 \\ 0 &-1 &-2 &-3 =-2 \\ 0& 1 & 2 & 3 = 2}[/mm]

Das erleichtert das weitere Rechnen ungemein.
Addiere nun II und III, dann hast du eine Nullzeile und musst daher dann einen Parameter setzen.

Marius

Bezug
                
Bezug
unterbestimmte gleichungssyste: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 So 08.12.2013
Autor: arbeitsamt

aber meine lösung ist auch richtig oder?

ich habe folgende lösungsmenge:

[mm] x_1= [/mm] -5-2s-t

[mm] x_2= \bruch{5}{2}-2t [/mm]

[mm] x_3= \bruch{5}{4}-\bruch{s}{2} [/mm]

[mm] x_4= \bruch{2}{3} [/mm] - [mm] \bruch{s}{3} [/mm] - [mm] \bruch{2t}{3} [/mm]

[mm] \vektor{-5 \\ \bruch{5}{2} \\ \bruch{5}{4} \\ \bruch{2}{3}}+s\vektor{-2 \\ 0\\ \bruch{1}{2} \\ \bruch{1}{3}}+t\vektor{-1 \\ -2\\ 0 \\ \bruch{2}{3}} [/mm]




Bezug
                        
Bezug
unterbestimmte gleichungssyste: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 So 08.12.2013
Autor: M.Rex


> aber meine lösung ist auch richtig oder?

Warum so kompliziert?
$ [mm] \vmat{ 1&2&3&4 = 1 \\ 0 &-1 &-2 &-3 =-2 \\ 0& 1 & 2 & 3 = 2} [/mm] $
II+III
$ [mm] \vmat{ 1&2&3&4 = 1 \\ 0 &-1 &-2 &-3 =-2 \\ 0& 0 & 0 & 0 = 0} [/mm] $

Die dritte Zeile ist nun eine Nullzeile, daher bekommst du parameterabhängige Lösungen.
Setze also [mm] x_{4}=t [/mm] und [mm] x_{3}=s [/mm]
Dann bekommst du aus Gleichung II

[mm] x_{2}=2-2s-3t [/mm]
und damit dann aus Gleichung I:
[mm] x_{1}=s+2t-3 [/mm]


>

> ich habe folgende lösungsmenge:

>

> [mm]x_1=[/mm] -5-2s-t

>

> [mm]x_2= \bruch{5}{2}-2t[/mm]

>

> [mm]x_3= \bruch{5}{4}-\bruch{s}{2}[/mm]

>

> [mm]x_4= \bruch{2}{3}[/mm] - [mm]\bruch{s}{3}[/mm] - [mm]\bruch{2t}{3}[/mm]

>

> [mm]\vektor{-5 \\ \bruch{5}{2} \\ \bruch{5}{4} \\ \bruch{2}{3}}+s\vektor{-2 \\ 0\\ \bruch{1}{2} \\ \bruch{1}{3}}+t\vektor{-1 \\ -2\\ 0 \\ \bruch{2}{3}}[/mm]

>
Welcher Parameter ist bei dir was? Was ist t, was s?

Marius

Bezug
                                
Bezug
unterbestimmte gleichungssyste: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 So 08.12.2013
Autor: arbeitsamt


> Warum so kompliziert?

ich habe die aufgabe schon so gelöst und aufgeschrieben. wenn es richtig ist kann ich es ja stehen lassen

>  Welcher Parameter ist bei dir was? Was ist t, was s?

[mm] s=x_2 [/mm] und [mm] t=x_3 [/mm]

steht auch im anfangsbereich ;)


EDIT:

>  [mm]\vmat{ 1&2&3&4 = 1 \\ 0 &-1 &-2 &-3 =-2 \\ 0& 1 & 2 & 3 = 2}[/mm]
>  
> II+III
>  [mm]\vmat{ 1&2&3&4 = 1 \\ 0 &-1 &-2 &-3 =-2 \\ 0& 0 & 0 & 0 = 0}[/mm]
>  
> Die dritte Zeile ist nun eine Nullzeile, daher bekommst du
> parameterabhängige Lösungen.
>  Setze also [mm]x_{4}=t[/mm] und [mm]x_{3}=s[/mm]
>  Dann bekommst du aus Gleichung II
>  
> [mm]x_{2}=2-2s-3t[/mm]
>  und damit dann aus Gleichung I:
>  [mm]x_{1}=s+2t-3[/mm]

hier müsste man noch nach [mm] x_3 [/mm] und [mm] x_4 [/mm] umstellen oder?

Bezug
                                        
Bezug
unterbestimmte gleichungssyste: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 So 08.12.2013
Autor: tonno

Wenn du schon s,t hast und damit [mm] x_2 [/mm] bzw. [mm] x_3, [/mm] dann rechne mit Zeile II [mm] x_4 [/mm] in Abhängigkeit von [mm] x_2,x_3 [/mm] aus. Und dann damit schließlich [mm] x_1 [/mm] via Zeile I. Damit dann die Lösungsmenge bilden und fertig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]