varianz der stichprobengrösse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:16 So 27.03.2005 | Autor: | ivo82 |
Hallo!
Ich habe ein Problem bei der Berechnung der Varianz der Stichprobengrösse [mm] (V(n_{s})) [/mm] für folgendes Beispiel:
1600 Menschen leben in 800 Haushalten, die Verteilung der Haushalte sieht folgendermaßen aus:
250 1-Personen-HH
350 2-Personen-HH
150 3-Personen-HH
50 4-Personen-HH
Es werden 300 Haushalte zufällig ausgewählt, jede Person in einem ausgewählten Haushalt wird in die Stichprobe aufgenommen. Daraus folgt (meiner Meinung nach), dass der Erwartungswert der Stichprobengröße [mm] (E(n_{s})) [/mm] 600 ist, da die durchschnittliche Haushaltsgrösse 2 ist. Weiters ist mir klar, das mindestens 350 bzw. höchstens 850 Personen in eine Stichprobe aufgenommen werden können. Nun soll die Varianz der Stichprobengrösse berechnet werden und da steig ich aus!
Folgende Formel ist als "Hilfestellung" gegeben:
[mm] V(n_{s})= V(\summe_{ _{U}}^{ }(I_{k}))=\summe_{U}^{}V(I_{k})+\summe_{k\not=1 }^{ }\summe_{ _{U}}^{ }Cov(I_{k},I_{l})
[/mm]
Bei dieser Formel ist U die Grundgesamtheit.
Weiters sind die [mm] I_{k} [/mm] und [mm] I_{l} [/mm] die Aufnahmeindikatoren des k-ten bzw. l-ten Elements [mm] (I_{k} [/mm] ist entweder 0 oder 1), es gilt [mm] E(I_{k})=\pi_{k} [/mm] und [mm] \pi_{k} [/mm] ist die Wahrscheinlichkeit, dass das Element k in die Stichprobe aufgenommen wird, also [mm] \pi_{k}=Pr(I_{k}=1). [/mm] Folglich ist [mm] \pi_{kl} [/mm] die Wahrscheinlichkeit, dass die Elemente k und l in der Stichprobe enthalten sind.
Außerdem gilt [mm] V(I_{k})=\pi_{k}*(1-\pi_{k}) [/mm] und [mm] Cov(I_{k},I_{l})=\pi_{kl}-\pi_{k}*\pi_{l}.
[/mm]
Das Problem liegt darin, dass [mm] \pi_{kl} [/mm] für zwei Elemente (Personen) k und l unterschiedlich zu berechnen ist, je nachdem ob die beiden Personen im selben Haushalt leben oder nicht und daher die Kovarianzen (Cov) nicht für alle [mm] I_{k} [/mm] und [mm] I_{l} [/mm] gleich sind.
Bitte helft mir, ich weis nicht genau wie die [mm] \pi_{kl} [/mm] zu berechnen sind und brauche dringend die Lösung, da diese im Buch nicht vorkommt!
Ach ja, das Ganze ist zu finden bei Särndal et al. 1992: Model Assisted Survey Sampling, S. 58;
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Ivo!
Zunächst mal eine winzige Korrektur: Bei den Kovarianzen muss wohl über [mm] $k\not [/mm] = l$ summiert werden statt über [mm] $k\not=1$.
[/mm]
Falls die Personen k und l in einem Haushalt leben, hat die Auswahl von k keine Auswirkungen auf die Auswahl von l. Also ist [mm] $\pi_{k,l}=\pi_k*\pi_l$ [/mm] und die zugehörige Kovarianz ist 0.
Anderenfalls wird l genau dann ausgewählt, wenn k ausgewählt wird. Deshalb ist [mm] $\pi_{k,l}=\pi_k=\pi_l$. [/mm] Entsprechend ist dann [mm] $Cov(I_k,I_l)=Var(I_k)$.
[/mm]
Hilft dir das weiter?
banachella
|
|
|
|