www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenvektor orthogonal r4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - vektor orthogonal r4
vektor orthogonal r4 < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektor orthogonal r4: Ansatz
Status: (Frage) beantwortet Status 
Datum: 07:11 Di 23.02.2010
Autor: Loewenzahn

Aufgabe
Bestimmen Sie einen Vektor u4 (nicht den nullvektor), der orthogonal zu u1,u2,u3, ist
u1= (1 -1 3 [mm] 1)^{T} [/mm]
u2=(-1 1 1 [mm] 3)^{T} [/mm]
u3=(1 -1 -1 [mm] 1)^{T} [/mm]

Hallo,
cih hoffe ihr könnt mir noch ganz fix helfen:
Ichhabe gleich die MAtheklausur und jetzt wollte ich  mir noch schnell aufschreiben, wie man das hier löst, und ich habe aber gerade voll den blackout...cih habe das bisher NUR im r3 mit dem kreuzprodukt gemacht:

hier hätte ich jetzt einfach drei skalarprodukte aus dem jeweiligen vektor ui und (x1 x2 x3 [mm] x4)^{T} [/mm] gebildet, die alle drei Null sein müssen...Das ergäbe dann ein GLS mit 4 gleichungen....

ist das richtig, mir kommt das so zeitraubend vor. geht das auch schneller?

wäre echt noch wichig vorher, vielleciht auch, ob es tatsächlich die einfachste methode ist?
danke!!!

        
Bezug
vektor orthogonal r4: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 Di 23.02.2010
Autor: angela.h.b.


> Bestimmen Sie einen Vektor u4 (nicht den nullvektor), der
> orthogonal zu u1,u2,u3, ist
>  u1= (1 -1 3 [mm]1)^{T}[/mm]
> u2=(-1 1 1 [mm]3)^{T}[/mm]
>  u3=(1 -1 -1 [mm]1)^{T}[/mm]
>  
> Hallo,
>  cih hoffe ihr könnt mir noch ganz fix helfen:
>  Ichhabe gleich die MAtheklausur und jetzt wollte ich  mir
> noch schnell aufschreiben, wie man das hier löst, und ich
> habe aber gerade voll den blackout...cih habe das bisher
> NUR im r3 mit dem kreuzprodukt gemacht:
>  
> hier hätte ich jetzt einfach drei skalarprodukte aus dem
> jeweiligen vektor ui und (x1 x2 x3 [mm]x4)^{T}[/mm] gebildet, die
> alle drei Null sein müssen...Das ergäbe dann ein GLS mit
> 4 gleichungen....

Hallo,

es gibt ein Gleichungssystem mit 3 Gleichungen und 4 Variablen, welches nun zu lösen ist.

Der Lösungsraum ist eindimensional, wird also von einem Vektor aufgespannt, und dieser ist orthogonal zu den drei anderen.

So ein kleines GS ist nicht zeitaufwendig.

Schnellkochrezept:

Die drei Vektoren als Zeilen (!) in eine Matrix legen, auf ZSF bringen, Kern bestimmen.

Gruß v. Angela

>  
> ist das richtig, mir kommt das so zeitraubend vor. geht das
> auch schneller?
>  
> wäre echt noch wichig vorher, vielleciht auch, ob es
> tatsächlich die einfachste methode ist?
>  danke!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]