www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebravektoren im funktionenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - vektoren im funktionenraum
vektoren im funktionenraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektoren im funktionenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Sa 01.12.2007
Autor: afri87

Aufgabe
Untersuchen sie, welche Funktionensätze linear unabhängige Vektoren im jeweiligen Funktionenraum sind.
a) [mm] {sin(n*\pi*x)|n=1,2,3} \subset {f:\IR \to \IR} [/mm]

Hallo

Erstmal Vorab: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also erstmal erstehe ich diese Aufgabenstellung schon mal nicht wirklich.
Man soll doch diese Sinusfunktionen als Vektoren darstellen? Und dann gucken ob diese linear unabhängig sind? Ist das soweit richtig oder total falsch gedacht?

Und dann würde meine Frage kommen wie mache ich diese Sinusfunktionen denn zu Vektoren?
Es ist ja so das für die gleichen x-Werte die ich in die drei Funktionen einsetzte immer der gleiche Wert nur um [mm] \pi [/mm] verschoben rauskommt. Kann man daraus nicht eigentlich schon die Antwort ableiten das die Funktionen (sofern man das sagen kann) linear abhängig sind?

Danke schon mal im Vorraus.

        
Bezug
vektoren im funktionenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Sa 01.12.2007
Autor: angela.h.b.


> Untersuchen sie, welche Funktionensätze linear unabhängige
> Vektoren im jeweiligen Funktionenraum sind.
>  a) [mm]{sin(n*\pi*x)|n=1,2,3} \subset {f:\IR \to \IR}[/mm]

> Also erstmal erstehe ich diese Aufgabenstellung schon mal
> nicht wirklich.
> Man soll doch diese Sinusfunktionen als Vektoren
> darstellen? Und dann gucken ob diese linear unabhängig
> sind? Ist das soweit richtig oder total falsch gedacht?
>  
> Und dann würde meine Frage kommen wie mache ich diese
> Sinusfunktionen denn zu Vektoren?

Hallo,

es geht hier in der Aufgabe um den Raum der Abbildungen v. [mm] \IR [/mm] nach [mm] \IR, Abb(\IR, \IR). [/mm]

Ihr habt in der Vorlesung gezeigt, daß dieser Raum mit den dort def. Verknüpfungen ein Vektorraum ist.

Die Elemente dieses Raumes sind Funktionen.

Du mußt Dich v. dem Gedanken verabschieden, daß Vektoren "gestapelte Zahlen" sind. Diese Räume aus Spaltenvektoren sind nur Beispiele für Vektorräume.

Dein Raum hier besteht wie gesagt aus Funktionen. Ein Vektor ist nichts anderes als ein Element eines Vektorraumes. Deine Vektoren hier sind Funktionen, und von den Elementen [mm] f_1, f_2, f_3 \in Abb(\IR, \IR) [/mm]  mit

[mm] f_1(x):=sin(\pi*x) [/mm]

[mm] f_2(x):=sin(2*\pi*x) [/mm]


[mm] f_3(x):=sin(3*\pi*x) [/mm]   für alles [mm] x\in \IR, [/mm]

sollst Du nun die Lineare Unabhängigkeit prüfen, d.h. Du sollst schauen, ob aus

[mm] af_1+bf_2+cf_3=n [/mm]         (n soll die Nullfunktion sein,   n(x):= 0 f.a. [mm] x\in \IR) [/mm]

folgt, daß a=b=c=0 gilt.


Überlege zuvor, was die Gleichheit v. Funktionen bedeutet.

Gruß v. Angela

Bezug
                
Bezug
vektoren im funktionenraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 So 02.12.2007
Autor: afri87

Danke werde das jetzt mal in Ruhe probieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]