www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Skalarproduktevereinfachen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Skalarprodukte" - vereinfachen
vereinfachen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Di 16.09.2008
Autor: abi09-.-

Aufgabe
Wie können Sie den Ausdruck [mm] |\bruch{\vec{a}\vec{b}}{\vec{a}^{2}} \vec{a}| [/mm]  allgemeingültig vereinfachen? In welchem Fall ist der Ausdruck undefiniert? Warum kommt im Allgemeinem nicht [mm] |\vec{b}| [/mm] heraus? Unter welcher Bedingung genau kommt tatsächlich [mm] |\vec{b}| [/mm] heraus?

hallo^^

ich wüsste ganz gern was ihr von dieser aufgabe haltet? ich kann mir nicht vorstellen was genau damit gemeint ist... vielleicht hat jemand einen kleinen tipp für mich? dankeschön^^


-> nicht lineare Algebra sry

        
Bezug
vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 16.09.2008
Autor: MathePower

Hallo abi09-.-,

> Wie können Sie den Ausdruck
> [mm]|\bruch{\vec{a}\vec{b}}{\vec{a}^{2}} \vec{a}|[/mm]  
> allgemeingültig vereinfachen? In welchem Fall ist der
> Ausdruck undefiniert? Warum kommt im Allgemeinem nicht
> [mm]|\vec{b}|[/mm] heraus? Unter welcher Bedingung genau kommt
> tatsächlich [mm]|\vec{b}|[/mm] heraus?
>  hallo^^
>  
> ich wüsste ganz gern was ihr von dieser aufgabe haltet? ich
> kann mir nicht vorstellen was genau damit gemeint ist...
> vielleicht hat jemand einen kleinen tipp für mich?


Wende hier die Regeln des []Skalarproduktes an.


> dankeschön^^
>  
> -> nicht lineare Algebra sry


Gruß
MathePower

Bezug
                
Bezug
vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Di 16.09.2008
Autor: abi09-.-

das heißt:

[mm] |\bruch{\vec{a}\vec{b}}{\vec{a}^{2}} \vec{a}|= \wurzel{\bruch{\vec{a}\vec{b}}{\vec{a}^{2}} \vec{a}\*\bruch{\vec{a}\vec{b}}{\vec{a}^{2}} \vec{a}} [/mm]

?


Bezug
                        
Bezug
vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Di 16.09.2008
Autor: Zwerglein

Hi, abi09,

> das heißt:
>  
> [mm]|\bruch{\vec{a}\vec{b}}{\vec{a}^{2}} \vec{a}|= \wurzel{\bruch{\vec{a}\vec{b}}{\vec{a}^{2}} \vec{a}\*\bruch{\vec{a}\vec{b}}{\vec{a}^{2}} \vec{a}}[/mm]

Naja - eher schon die Formeln:

(1) [mm] \vec{a} \circ \vec{b} [/mm] = [mm] a*b*cos(\phi) [/mm]
(a, b sind die Beträge der Vektoren, [mm] \phi [/mm] der Zwischenwinkel)

(2) [mm] (\vec{a})^{2} [/mm] = [mm] a^{2} [/mm]

Und nun probier's nochmal!

mfG!
Zwerglein

Bezug
                                
Bezug
vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Di 16.09.2008
Autor: abi09-.-

kann das nochmal erläuert werden? warum gilt meine formel nicht?

Bezug
                                        
Bezug
vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 16.09.2008
Autor: abakus


> kann das nochmal erläuert werden? warum gilt meine formel
> nicht?  

Hallo,
es geht hier nicht darum, durch einen Taschenspielertrick aus einem möglichen negativen Vorzeichen ein positives zu machen. Der Term zwischen den Betragsstrichen handelt nicht ursächlich von reellen Zahlen, sondern von Vektoren. Also solltest du auch die Regen für das Rechnen mit Vektoren (z.B. Skalarprodukt) anwenden.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]