www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesverknüpfung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - verknüpfung
verknüpfung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mi 06.07.2011
Autor: kioto

Aufgabe
f: [mm] \IR^2 [/mm] -> [mm] \IR^2, f(x,y):=(x-y,xy^2) [/mm]
g: [mm] \IR^2 [/mm] -> [mm] \IR^2, g(x,y):=e^{x^2y},sinxcosy^2) [/mm]

kann jmd. kurz überprüfen ob ichs richtig hab?

(g o [mm] f)(x,y)=(e^{(x-y)^2xy^2},sin(x-y)cos(xy)^2) [/mm]

        
Bezug
verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Mi 06.07.2011
Autor: schachuzipus

Hallo kioto,


> f: [mm]\IR^2[/mm] -> [mm]\IR^2, f(x,y):=(x-y,xy^2)[/mm]
>  g: [mm]\IR^2[/mm] -> [mm]\IR^2, g(x,y):=e^{x^2y},sinxcosy^2)[/mm]

>  
> kann jmd. kurz überprüfen ob ichs richtig hab?
>  
> (g o [mm]f)(x,y)=(e^{(x-y)^2xy^2},sin(x-y)cos(xy)^2)[/mm]  

Fast, du hast am Ende ein Quadrat unterschlagen, ich vermute, das war nur ein Tippfehler, richtig:
[mm]...\cos\left(\left[xy^{\red{2}}\right]^2\right)[/mm]

Gruß

schachuzipus


Bezug
                
Bezug
verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Mi 06.07.2011
Autor: kioto

danke!
jetzt soll ich das ableiten, aber ohne benutzung der mehrdimensionalen kettenregel, wie soll das gehen? kommt da nicht dasselbe raus?

Bezug
                        
Bezug
verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Do 07.07.2011
Autor: angela.h.b.


> danke!
>  jetzt soll ich das ableiten, aber ohne benutzung der
> mehrdimensionalen kettenregel, wie soll das gehen?

Hallo,

Du nimmst

[mm] h(x,y)=(e^{(x-y)^2xy^2},sin(x-y)cos(xy^2)^2) [/mm] ,

und stellst die Jacobimatrix auf.


> kommt da
> nicht dasselbe raus?

Es wäre zu hoffen, daß die Ergebnisse gleich sind.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]