www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisverschiedene Topologien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - verschiedene Topologien
verschiedene Topologien < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verschiedene Topologien: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:44 Mi 05.10.2011
Autor: physicus

Hallo Forum

Wenn ich eine Funktion $\ H: C [mm] \subset \IR \to [/mm] L(X) $ habe, wobei $\ C $ eine kompakte Teilmenge von $\ [mm] \IR [/mm] $ ist und $\ L(X) $ der Raum aller beschränkten linearen Operatoren.
Wenn ich weiss, dass folgendes gilt:

$\ H $ ist stetig für die kompakte Konvergenz, d.h. folgende Abbildung ist gleichmässig stetig auf jeder Kompakten Teilmenge $\ K [mm] \subset [/mm] X $.

$\ [mm] K\times [/mm] C [mm] \ni (\alpha,x) \mapsto H(\alpha)(x) [/mm] $

D.h. heisst ja, $\ [mm] \forall \epsilon [/mm] >0 [mm] \forall [/mm] x,y [mm] \in [/mm] C [mm] \exists \delta [/mm] > 0$ so dass:

$\ [mm] \parallel H(\alpha)(x) [/mm] - [mm] H(\beta)(y) \parallel [/mm] < [mm] \epsilon [/mm] $ wann immer
$\ [mm] |\alpha -\beta| [/mm] < [mm] \delta [/mm] $ UND $\ [mm] \parallel [/mm] x - y [mm] \parallel [/mm] < [mm] \delta [/mm] $.

Jetzt möchte ich gerne die Stetigkeit der Punktweise Konvergenz folgern.
Also:
$\ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] >0 $ so dass $\ [mm] \forall \alpha, \beta \in [/mm] C $ mit $\ [mm] |\alpha [/mm] - [mm] \beta [/mm] |  < [mm] \delta \Rightarrow \parallel H(\alpha)(x)-H(\beta)(x) \parallel [/mm] < [mm] \epsilon [/mm] $ für alle $x [mm] \in [/mm] X $.

Stimmt diese Definitionen so weit? Ich bin mir nicht ganz sicher mit der Definition von der kompakten Konvergenz. Spielt es dort keine Rolle, welchen Abstand $\ x,y $ haben?

Zum Beweis: wähle ich dann einfach das $\ [mm] \delta [/mm] $ der kompakten Konvergenz und die kompakte Menge $\ C [mm] :=\{x\} [/mm] $ oder wie macht man das ?

Gruss

physicus

        
Bezug
verschiedene Topologien: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Do 20.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]