www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollst. Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - vollst. Induktion
vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollst. Induktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 07.11.2005
Autor: Neco1982

Hallo,

folgende Aufgabe soll ich lösen:

[mm] \bruch{1}{1*4}+ \bruch{1}{4*7}+...+ \bruch{1}{(3n-2)(3n+1} [/mm]

ich versuche diese Summe auf eine Formel zu bringen, aber ich scheiterei leider an der Raterei.

Vielleicht kann mir jemand helfen.

Danke im Voraus

        
Bezug
vollst. Induktion: Hinweis
Status: (Antwort) fertig Status 
Datum: 20:36 Mo 07.11.2005
Autor: MathePower

Hallo Neco1982,

> Hallo,
>  
> folgende Aufgabe soll ich lösen:
>  
> [mm]\bruch{1}{1*4}+ \bruch{1}{4*7}+...+ \bruch{1}{(3n-2)(3n+1}[/mm]
>  
> ich versuche diese Summe auf eine Formel zu bringen, aber
> ich scheiterei leider an der Raterei.

Zerlege den Bruch wie folgt:
[mm]\bruch{1}{(3n-2)(3n+1)}\;=\;\bruch{A}{3n-2}\;+\;\bruch{B}{3n+1}[/mm]

Die Koeffizienten A, B gehen aus einem Koeffizientenvergleich hervor.

Sind die Koeffizienten berechnet, dann bestimme die Summe obiger Reihe mit Hilfe der soeben ermittelten Reihen.

Gruß
MathePower


Bezug
                
Bezug
vollst. Induktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:10 Mo 07.11.2005
Autor: Neco1982

Danke für deine Antwort.

Dieser Tipp steht auch auf meinem Aufgabenzettel, aber ich verstehe nicht, wieso aus der 1 A und B wird.

Angeblich soll eine Formel für diese Summe durch Raten hergestellt werden können, aber ich komme einfach auf keine Lösung.

Ich verstehe, wieso du das so zerlegst, aber warum wird denn aus 1 A und B?

Bezug
                        
Bezug
vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Di 08.11.2005
Autor: angela.h.b.

Hallo,

> Dieser Tipp steht auch auf meinem Aufgabenzettel,

die sind ja ganz schön entgegenkommend bei Euch.


[mm] >>\bruch{1}{(3n-2)(3n+1)}=bruch{A}{3n-2}+bruch{B}{3n+1} [/mm]

>aber ich

> verstehe nicht, wieso aus der 1 A und B wird.

Von "aus der 1 A und B wird" kann gar keine Rede sein!
DU mußt A und B bestimmen, so daß die Gleichung oben gilt!

Und damit dann - aber das ist erst Stufe 2 - in deine Summe gehen.

Gruß v. Angela


>
> Angeblich soll eine Formel für diese Summe durch Raten
> hergestellt werden können, aber ich komme einfach auf keine
> Lösung.
>
> Ich verstehe, wieso du das so zerlegst, aber warum wird
> denn aus 1 A und B?


Bezug
                                
Bezug
vollst. Induktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 08.11.2005
Autor: Neco1982

Hallo Angela,

danke für deine Antwort.

Um A und B herauszufinden, habe ich folgende Gleichung aufgestellt:

3n(A+B) + A - 2B = 1
damit die Gleichung erfüllt wird müssen A und B bis auf das Vorzeichen identisch sein,so dass das Glied 3n wegfällt. Das kann aber nicht sein, weil A - 2B nicht eins sein kann (wenn A und B bis auf das Vorzeichen identisch sind). Ich bin schon die ganze Zeit am Herumprobieren, komme aber auf kein Ergebnis!!

Bitte helft mir!!
Liebe Grüße
Neco

Bezug
                                        
Bezug
vollst. Induktion: Brett vorm Kopf!
Status: (Antwort) fertig Status 
Datum: 00:18 Mi 09.11.2005
Autor: leduart

Hallo
Du bist wohl schon sehr erschöpft!
Du hast doch alles:
1.  A+B=0
2. A-2B =1
A=-B in 2. eingesetzt: -3B=1   B=-1/3!.
Ich hoff du greifst jetzt an den Kopf und reisst das Brett weg, oder du schläfst mal wieder richtig!
Gruss leduard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]