www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Di 01.04.2008
Autor: domenigge135

Hallo ich wäre wirklich dankbar, wenn ihr mir einen kleinen anstoss geben könntet:

Die Aufgabe lautet: [mm] \summe_{k=0}^{n}\bruch{4k}{3^{k+1}}=1-\bruch{2n+3}{3^{k+1}} [/mm]

Ich spar mir mal jetzt die einzelnen Schritte und komme gleich zum Beweis. Ich hänge jetzt fest bei folgender Schreibweise: [mm] =1-\bruch{2n+3}{3^{n+1}}+\bruch{4n+4}{3^{n+2}} [/mm]


Das Problem ist nun, dass ich die Nenner von meinen beiden Brüchen ja irgendwie gleichnamig machen muss. Aber wie kann ich das in diesem Fall machen???

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 01.04.2008
Autor: schachuzipus

Hallo domenigge,


> Hallo ich wäre wirklich dankbar, wenn ihr mir einen kleinen
> anstoss geben könntet:
>  
> Die Aufgabe lautet:
> [mm]\summe_{k=0}^{n}\bruch{4k}{3^{k+1}}=1-\bruch{2n+3}{3^{\red{n}+1}}[/mm]
>  
> Ich spar mir mal jetzt die einzelnen Schritte und komme
> gleich zum Beweis. Ich hänge jetzt fest bei folgender
> Schreibweise:
> [mm]=1-\bruch{2n+3}{3^{n+1}}+\bruch{4n+4}{3^{n+2}}[/mm]
>  
> Das Problem ist nun, dass ich die Nenner von meinen beiden
> Brüchen ja irgendwie gleichnamig machen muss. Aber wie kann
> ich das in diesem Fall machen???


Erweitere den ersten der beiden Brüche mit 3 und ziehe das "-" zur Vermeidung von Fehlern in den Zähler, also

[mm] $1-\frac{2n+3}{3^{n+1}}+\frac{4n+4}{3^{n+2}}=1+\frac{\blue{3}\cdot{}(-2n-3)}{\blue{3}\cdot{}3^{n+1}}+\frac{4n+4}{3^{n+2}}$ [/mm]

Damit sollte es klappen ;-)

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]