www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenvollständige Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - vollständige Induktion
vollständige Induktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: kleine Unklarheit
Status: (Frage) überfällig Status 
Datum: 15:15 So 11.05.2008
Autor: devilsdoormat

Aufgabe
Seien  [mm]f,g: \IR \to \IR^{n}[/mm] k-mal stetig partiell differenzierbar. Zeigen Sie: Für [mm]\alpha \in \IN_{0}^{n}[/mm] mit [mm]\left| \alpha \right| \le k[/mm] und [mm]x \in \IR^{n}[/mm] gilt:

[mm] \partial^{\alpha} \left( fg \right) \left( x \right) [/mm] = [mm] \sum_{\beta \le \alpha} [/mm]   [mm] {\alpha \choose \beta} \partial^{\beta}f \left( x \right) \partial^{\alpha - \beta}g \left( x \right)[/mm] [/mm]

Dabei definieren wir für [mm]\alpha , \beta \in \IN_{0}^{n}[/mm]:

(a) [mm]\beta \le \alpha[/mm] genau dann, wenn für alle [mm]1 \le j \le n[/mm] gilt [mm]\beta_{j} \le \alpha_{j}[/mm]
[mm] (b){\alpha \choose \beta} [/mm] := [mm] \bruch{\alpha !}{(\alpha - \beta)! \beta !} [/mm]

Hallo,

ich habe diese Frage in keinem anderen Forum gestellt.

Mein Ansatz ist diesen Beweis über vollständige Induktion zu führen. Durch ausprobieren mit einfachen Fällen habe ich gesehen, dass das ja letzten Endes auf den binomischen Lehrsatz führt. Allerdings weiß ich nicht wie ich bei vollständiger Induktion mit diesen Multiindizies [mm]\alpha , \beta[/mm] umzugehen habe.
Muss ich beim Induktionsschritt nur die Länge des Multiindex erhöhen, oder eine einzelne Komponente oder muss ich vielleicht noch was ganz anderes machen? Ich bin mir nicht sicher.

Wäre dankbar, wenn ich da ein paar Tips bekommen könnte.

        
Bezug
vollständige Induktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Di 13.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]