www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - vollständige Induktion
vollständige Induktion < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 20.10.2009
Autor: Serafyna

Hallo zusammen,

ich sitz vor meinem Übungsblatt und habe folgendes Problem und bin dabei am Verzweifeln. Wäre echt super, wenn ihr mir helfen könnt.

Aufgabe
Es sei M eine endliche Menge mit card M = n, und sei P(M) die Potenzmenge von M. Zeigen Sie: card P(M) = [mm] 2^n. [/mm]
Hinweis: Machen Sie vollständige Induktion nach n.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


card M = n
card P(M) = [mm] 2^n [/mm]

IA: n=1        card M = 1
                   => P(M) = [mm] {\emptyset, 1} [/mm]
                   => card P(M) = 2 = [mm] 2^1 [/mm] = [mm] 2^n [/mm]

IH: [mm] \summe_{k=1}^{n} [/mm] card P(M) = [mm] 2^n [/mm] für ein n Element N.

IS: n-> n+1

    [mm] \summe_{k=1}^{n+1} [/mm] card P(M) = 2^(n+1)

=  [mm] \summe_{k=1}^{n} n^2 [/mm] + 2^(n+1)


Vielen lieben Dank,
eure Silke

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Di 20.10.2009
Autor: schachuzipus

Hallo Silke und [willkommenmr],

zunächst mal solltest du (noch)mal einen Blick auf die Forenregeln werfen, v.a. auf den Punkt "höflicher Umgangston"

Es ist doch kaum zuviel verlangt, mit einem knappen "Hallo" zu beginnen und "LG" am Ende zu schreiben, schließlich erwartest du immerhin kostenlose Hilfe

> Es sei M eine endliche Menge mit card M = n, und sei P(M)
> die Potenzmenge von M. Zeigen Sie: card P(M) = [mm]2^n.[/mm]
>  Hinweis: Machen Sie vollständige Induktion nach n.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> card M = n
>  card P(M) = [mm]2^n[/mm]
>  
> IA: n=1        card M = 1
>                     => P(M) = [mm]\{\emptyset, 1\}[/mm]

Ja, das stimmt im Prinzip, wenn auch das Element von $M$ nicht unbedingt 1 sein muss und du es lediglich als "Platzhalter" für das Element benutzt.

Genauer vllt.: Sei $M$ eine Menge mit $card(M)=1$, etwa [mm] $M=\{a\}$. [/mm] Dann ist [mm] $\mathcal{P}(M)=\{\emptyset,a\}$, [/mm] also [mm] $card(\mathcal{P}(M))=2=2^1$ [/mm] ...


>                
>      => card P(M) = 2 = [mm]2^1[/mm] = [mm]2^n[/mm]

>  
> IH: [mm]\summe_{k=1}^{n}[/mm] card P(M) = [mm]2^n[/mm] für ein n Element N.

Huch?

Wie kommst du auf das Summenzeichen?

Die Induktionsvoraussetzung sollte lauten:

Sei [mm] $n\in\IN$ [/mm] beliebig, aber fest und sei $M$ eine Menge mit $card(M)=n$ und gelte [mm] $card(\mathcal{P}(M))=2^n$ [/mm]

>  
> IS: n-> n+1
>  
> [mm]\summe_{k=1}^{n+1}[/mm] card P(M) = 2^(n+1)

Nein, zu zeigen ist im Induktionsschritt, dass unter der Induktionsvoraussetzung für eine Menge $M'$ mit $n+1$ Elementen, also $card(M')=n+1$ gefälligst die Potenzmenge [mm] $\mathcal{P}(M')$ [/mm] auch [mm] $2^{n+1}$ [/mm] Elemente hat.

Dazu kannst du mal o.B.d.A. annehmen, dass [mm] $M'=M\cup \{x\}$ [/mm] mit [mm] $x\notin [/mm] M$ ist und die Teilmengen von $M'$ betrachten, die $x$ enthalten und jene, die $x$ nicht enthalten ...

>  
> =  [mm]\summe_{k=1}^{n} n^2[/mm] + 2^(n+1)

So ohne Kommentar zur Rechnung und v.a zum Auftauchen des Summenzeichen kann man schwerlich was genaueres sagen ...


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]