www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikvon einer ZV erz. Sig.-Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - von einer ZV erz. Sig.-Algebra
von einer ZV erz. Sig.-Algebra < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

von einer ZV erz. Sig.-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Mo 09.11.2009
Autor: DesterX

Hallo zusammen.

Kann mir vielleicht einer erklären, wie die von einer Zufallsvariable bzw. von Zufallsvariablen erzeugte Sigma-Algebra ausschaut?
Irgendwie hab ich da ein Verständnisproblem.

Nehme ich z.B. ein einfaches Würfelexperiment: 2Mal Werfen und betrachte die Aufgensumme, also:
$ [mm] \Omega [/mm] = [mm] \{(1,1),(1,2),...,(6,6)\} [/mm] $
$ [mm] \Omega' [/mm]  = [mm] \{2,3,...,12\} [/mm] $
$ X: [mm] \Omega \to \Omega' [/mm] $
$ [mm] (\omega_{1},\omega_{2}) \mapsto \omega_{1} [/mm] + [mm] \omega_{2}$ [/mm]

Ist dann [mm] $\sigma(X)=\{X^{-1}(A): A \in \mathcal{A}'\} [/mm]  $ einfach die Potenzmenge von [mm] $\Omega$, [/mm] also [mm] $P(\Omega)$ [/mm] ?  Falls ja, wäre mir noch unklar, warum man sie sodann einführt, wenn da ohnehin kein Unterschied zur Potenzmenge ist. Wie schaut das ganze vorallem bei mehreren Zufallsvariablen aus?
Ebenso verstehe ich noch nicht so ganz, warum man dann [mm] $\sigma(X)$ [/mm] als "Informationsgehalt" von X interpretiert.

Ich wäre um jeden Ratschlag und eventuell einfache Beispiele dankbar.
Dankeschön im Voraus.
Gruß, DesterX

        
Bezug
von einer ZV erz. Sig.-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Di 10.11.2009
Autor: luis52

Moin DesterX,

was ist denn [mm] $\mathcal{A}'$? [/mm] Ich vermute [mm] $\mathcal{P}(\Omega')$. [/mm] Dann ist [mm] $\sigma(X)\ne \mathcal{P}(\Omega)$, [/mm] denn [mm] $\{(1,1),(2,1)\}\notin \sigma(X)$ [/mm] ...

vg Luis  

Bezug
                
Bezug
von einer ZV erz. Sig.-Algebra: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Di 10.11.2009
Autor: DesterX

Danke für die Antwort, luis!

Genau, ich würde dann $ [mm] \mathcal{A}' [/mm] = [mm] P(\Omega')$ [/mm] setzen.

Du hast recht: $ [mm] \{(1,1),(2,1)\}\notin \sigma(X) [/mm] $, aber nur zum Verständis:
Für [mm] $A=\{2,3´\} \in \mathcal{A}'$ [/mm]  wäre beispielsweise [mm] $X^{-1}(A)=\{(1,1),(1,2),(2,1)\} \in \sigma(X)$ [/mm] ?


Bezug
                        
Bezug
von einer ZV erz. Sig.-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Di 10.11.2009
Autor: luis52


> Danke für die Antwort, luis!
>  
> Genau, ich würde dann [mm]\mathcal{A}' = P(\Omega')[/mm] setzen.
>
> Du hast recht: [mm]\{(1,1),(2,1)\}\notin \sigma(X) [/mm], aber nur
> zum Verständis:
>  Für [mm]A=\{2,3´\} \in \mathcal{A}'[/mm]  wäre beispielsweise
> [mm]X^{-1}(A)=\{(1,1),(1,2),(2,1)\} \in \sigma(X)[/mm] ?
>  

[ok]

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]