wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ein Spieler braucht beim Kniffel nur noch die Sechsen. Die ZUfallsgröße X gege die Anzahl der Sechsen an. Bestimmen Sie die Verteilung von X, die Wahscheinlichkeit für X [mm] \ge [/mm] 3 und den Erwartungswert von X.
(5 Würfel werden gleichzeitig geworfen. Man darf max. zweimal beliebe Würfel aussuchen und noch mal gleichzeitig würfeln) |
X= die Anzahl der 6en bei dreimaligem Wurf mit 5 Würfeln
X(Omega) = {0,1,2,3,4,5} (ist das die Verteilung?)
Wie berechne ich die Wahscheinlichkeit für X [mm] \ge [/mm] 3? Mich irritiert, dass man drei mal mit 5 Würfeln würfelt. Wie bringe ich die beiden Größen in die Rechnung?
Wie bekomme ich die Anzahl der Möglichkeiten raus?
Danke!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:21 Mo 01.06.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|