www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriewarum gibt es kein Potenzial?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - warum gibt es kein Potenzial?
warum gibt es kein Potenzial? < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

warum gibt es kein Potenzial?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Do 10.09.2009
Autor: blumich86

Aufgabe
Gegeben Sei das Vektorfeld:
[mm] \overrightarrow{v}:\R^2\(0,0)^T ->R^2, \overrightarrow{v}(x,y)=\vektor{-y/(x^2+y^2) \\ x/(x^2+y^2)} [/mm]
und die Kurve C mit der PaD
[mm] \overrightarrow{\delta}:[0,2\pi] [/mm] -> R,
[mm] \overrightarrow{\delta}(t)=(cost,sint)^T [/mm]

a) Berechnen Sie [mm] \integral_{c}{\overrightarrow{v}(\overrightarrow{x}) dx}. [/mm] Erläutern Sie an Hand Ihres Ergebnisses, warum [mm] \overrightarrow{v} [/mm] kein Potenzial bestitzt.

b) Obwohl [mm] \overrightarrow{v} [/mm] wirbelfrei ist, bestitz [mm] \overrightarrow{v} [/mm] kein Potenzial in [mm] R^2\{(0,0)^T}. [/mm] Erläutern Sie, warum dies kein Widerspruch ist.

diese frage habe ich in keinen anderen forum gestellt.

hallo nochmals :)),

hoffe mal wieder auf eure Hilfe.

zu a) bzgl. dem Teil Erläutern Sie an Hand Ihres Ergebnisses..., die Ergebnisse sind: das das Vektorfeld wirbelfrei ist und das die Kurve geschlossen ist.

meine erste Frage dazu, was bedeutet dieses wirbelfrei. ich habe im internet versucht die antwort zu finden aber leider ist alles auf fachchinesisch, so das ich nicht vernüftiges bzw. für mich verständliches gefunden habe.
zweitens: es muss doch ein Potzenzial haben, da es doch wirbelfrei ist?? warum gibt es kein potenzial?

zu b) warum ist das kein widerspruch??

        
Bezug
warum gibt es kein Potenzial?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Do 10.09.2009
Autor: XPatrickX

Hallo,

wirbelfrei bedeutet, dass die Rotation verschwindet. Dies ist bei stetigen Vektorfeldern hinreichend dafür, dass ein Potential existiert. Dein Vektorfeld ist allerdings nicht stetig!

Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]