www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrawelche Mengen bilden Unterräum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - welche Mengen bilden Unterräum
welche Mengen bilden Unterräum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

welche Mengen bilden Unterräum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 So 12.11.2006
Autor: wonni

Aufgabe
Welche der folgenden Mengen bilden einen Unterraum von [mm] (\IR^{\IR},+,\*)? [/mm]
(a) Die Lipschitz-stetigen Funktionen {f: [mm] \IR \to \IR: \exists [/mm] C>0 [mm] \forall x,y\in \IR: \vmat{f(x)-f(y)} \le [/mm] C [mm] \vmat{x-y}} [/mm]
(b) Die Lipschitz-stetigen Funktionen mit Konstante 1 {f: [mm] \IR \to \IR: \forall x,y\in \IR: \vmat{f(x)-f(y)} \le \vmat{x-y}} [/mm]
(c) Die beschränkten Funktionen.
(d) Die stetigen Funktionen.
(e) Die geraden Funktionen: [mm] \forall [/mm] x [mm] \in \IR [/mm] : f(x)=f(-x).
(f) Die ungeraden Funktionen: [mm] \forall [/mm] x [mm] \in \IR [/mm] : f(x)=-f(-x).

Als ich versuchte dieses beispiel auf die Unterraumaxiome zu testen, ist bei mir völliger Blödsinn herausgekommen... Kann mir denn bitte jemand helfen???? Danke :))
(PS: Habe die Betragszeichen nicht gefunden und deshalb die Determinanten Striche angewandt, hoffe man kann es lesen!)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
welche Mengen bilden Unterräum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Mo 13.11.2006
Autor: angela.h.b.


> Welche der folgenden Mengen bilden einen Unterraum von
> [mm](\IR^{\IR},+,\*)?[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  (a) Die Lipschitz-stetigen Funktionen {f: [mm]\IR \to \IR: \exists[/mm]
> C>0 [mm]\forall x,y\in \IR: \vmat{f(x)-f(y)} \le[/mm] C [mm]\vmat{x-y}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  (b) Die Lipschitz-stetigen Funktionen mit Konstante 1 {f:
> [mm]\IR \to \IR: \forall x,y\in \IR: \vmat{f(x)-f(y)} \le \vmat{x-y}}[/mm]
>  
> (c) Die beschränkten Funktionen.
>  (d) Die stetigen Funktionen.
>  (e) Die geraden Funktionen: [mm]\forall[/mm] x [mm]\in \IR[/mm] :
> f(x)=f(-x).
>  (f) Die ungeraden Funktionen: [mm]\forall[/mm] x [mm]\in \IR[/mm] :
> f(x)=-f(-x).
>  Als ich versuchte dieses beispiel auf die Unterraumaxiome
> zu testen, ist bei mir völliger Blödsinn herausgekommen...

Hallo,

an welcher der 6 Aufgaben hast Du Dich denn versucht?
Und was hast Du getan?
Es wäre hilfreich für die Hilfeleistung, wenn man das hier lesen könnte.

So nur allgemeine Hinweise:

In der Vorlesung wurde ganz sicher besprochen, daß [mm] (\IR^{\IR},+,\*) [/mm] ein Vektorraum ist.

Du mußt daher ja "nur noch" zeigen, daß die zu betrachtenden Mengen nichtleer sind und abgeschlossen gegenüber den linearen Operationen, daß also jeweils f+g und [mm] \alpha [/mm] f [mm] (\alpha \in \IR) [/mm] auch drinliegen. Oder eben nicht.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]