www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungwindschiefe Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - windschiefe Geraden
windschiefe Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

windschiefe Geraden: Frage
Status: (Frage) beantwortet Status 
Datum: 23:21 So 05.06.2005
Autor: b.BeautY

Ich hoffe mir kann jemand erklären wie man die Punkte bestimmen kann die sich bei windschiefen Geraden am nächsten liegen, für deren Abstand voneinander also gilt:

[mm] d=(\vec{p}- \vec{q})* \bruch{\vec{u}x\vec{v}}{|\vec{u}x\vec{v}|} [/mm]

p und q sind die Ortsvektoren, u und v linear unabhängige Richtungsvektoren zweier Geraden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
windschiefe Geraden: Tipps
Status: (Antwort) fertig Status 
Datum: 08:37 Mo 06.06.2005
Autor: informix

Hallo b.BeautY,
[willkommenmr]
Freust du dich über eine nette Anrede? Wir auch!

> Ich hoffe mir kann jemand erklären wie man die Punkte
> bestimmen kann die sich bei windschiefen Geraden am
> nächsten liegen, für deren Abstand voneinander also gilt:
>  
> [mm]d=(\vec{p}- \vec{q})* \bruch{\vec{u}\*\vec{v}}{|\vec{u}\*\vec{v}|}[/mm]
>  
> p und q sind die Ortsvektoren, u und v linear unabhängige
> Richtungsvektoren zweier Geraden.
>  

Man stellt eine Ebene E auf, die parallel zu einer der Geraden (h) verläuft und die andere Gerade (g) enthält.
Dann hat jeder Punkt B auf h den gesuchten Abstand von der Ebene E. Der Normalenvektor von E ist zugleich der Vektor, der in Richtung des Abstandes zeigt, d.h. er steht auf beiden Geraden senkrecht

Um nun die Punkte auf beiden Geraden zu finden, die diesen kürzesten Abstand repräsentieren, verfährt man so:
Die Ebene E', die g enthält und in Richtung des Abstandes zeigt, schneidet die Gerade h im Punkt [mm] P_2. [/mm]
Den zugehörigen Punkt [mm] P_1 [/mm] erhält man als Schnittpunkt der Lotgeraden $l: [mm] \vec{x}=\vec{p_1} [/mm] + [mm] r\vec{n}_E$ [/mm] mit der Gerade g.

siehe auch: MBAbstandsberechnungen in R3, MBNormalenform in der MBMatheBank

Kommst du jetzt alleine weiter?


Bezug
                
Bezug
windschiefe Geraden: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Fr 04.01.2008
Autor: hwj

Die Gleichung für die Lotgerade l muss heissen
l: x = p2 + r*nE
Man erhält aber p1 schon aus dem LGS des Schnitts von E' mit h (ausprobieren).

Bezug
                
Bezug
windschiefe Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Fr 10.06.2005
Autor: b.BeautY

Guten Tag,
habs verstanden, vielen Dank Informix.
Ich hab in der Datenbak auch nach Beiträgen zu dem Thema gesucht, aber nich das richtige gefunden.

Gruß beauty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]