www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlenz bestimmen komplexe zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "komplexe Zahlen" - z bestimmen komplexe zahlen
z bestimmen komplexe zahlen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

z bestimmen komplexe zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Di 16.02.2010
Autor: blackylk

Aufgabe
Bestimmen Sie alle z [mm] \in \IC [/mm] mit:

i) |z-1|=2 und z- [mm] \bar{z} [/mm] =4i

hi, ich komme nicht auf die Lösungsmenge, kann jemand vielleicht nen kleinen Tipp geben?

Bis hier bin ich gekommen:

z=a+ib
z- [mm] \bar{z} [/mm] =4i  <=> a+ib-(a-ib)=4i
2ib=4i  <=> b=2

Das hab ich dann in die erste Zeile der Gleichung eingesetzt.
Wie schreibe ich jetzt überhaupt die Lösungsmenge auf, ohne das ein Korrektor mit den Zähnen fletscht?



|a+1+ib|=2
[mm] (a-1)^2-4=4 [/mm]

[mm] a^2-2a+1-4=4 [/mm]
[mm] a^2-2a-7=0 [/mm]
pg : [mm] a=1\pm\wurzel{8} [/mm]

[mm] \IL=\{z\in \IC | \mbox{ a=1\pm\wurzel{8} und b=2?\}} [/mm]

        
Bezug
z bestimmen komplexe zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Di 16.02.2010
Autor: gfm

Ganz allgemein:

Wenn eine Teilmenge [mm] L\subseteq\IR^n [/mm] aus einer Anzahl von Gleichnungen [mm] g_i(x)=0 [/mm] für die [mm] x\in [/mm] L bestimmt werden soll, und man formt die GLeichungen um und setzt sie ineinander ein, um dadurch der Lösungmenge näher zu kommen, da hat es sich für mich bewährt, die ursprünglichen Gleichungen immer mitzuführen, um Lösungen, die durch nicht äquivalente hinzukommen am Ende wieder rauszuwerfen. Das hat jetzt nicht ummitelbar was mit Deiner Aufgabe zu tun, kann Dir aber in Zukunft Fehler ersparen.

Ich würde es so aufschreiben:

z=a+bi

(|z-1|=2  [mm] \wedge\ z-\overline{z}=4i) [/mm]

[mm] \gdw [/mm]

(|a+bi-1|=2  [mm] \wedge\ [/mm] a+bi-(a-bi)=4i)

[mm] \gdw [/mm]

[mm] (\wurzel{(a-1)^2+b^2}=2 \wedge\ [/mm] 2bi=4i)

[mm] \gdw [/mm]

[mm] (\wurzel{(a-1)^2+b^2}=2 \wedge\ [/mm] 2bi=4i)

[mm] \gdw [/mm]

[mm] (\wurzel{(a-1)^2+2^2}=2\ \wedge\ [/mm] b=2)

[mm] \gdw [/mm]

[mm] ((a-1)^2+4=4\ \wedge\ [/mm] b=2)

[mm] \gdw [/mm]

[mm] ((a-1)^2=0\ \wedge\ [/mm] b=2)

[mm] \gdw [/mm]

(a=1  [mm] \wedge\ [/mm] b=2)



Bezug
                
Bezug
z bestimmen komplexe zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 Do 18.02.2010
Autor: blackylk

Danke, vor lauter Bäume seh ich den Wald nicht mehr. Ist zwar platzauwendig die Methode, aber so verlier ich den Überblick nicht.


argh blöde KLausuren. Keine Lust mehr....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]