www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive Mengenlehrezahlenmengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Naive Mengenlehre" - zahlenmengen
zahlenmengen < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zahlenmengen: Frage, Anmerkungen
Status: (Frage) beantwortet Status 
Datum: 15:21 Sa 23.02.2008
Autor: the9ismine_

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo. Zuersteinmal bin ich mir nicht sicher, ob ich das richtigen unterbegriff für meine fragestellung gewählt habe, aber das kann ein admin sicher noch ändern. nun zu meiner Frage:
Für meine Facharbeit über die Projektion von Koordinaten auf der Kugeloberfläche, soll ich beweisen, dass die Zahlen Menge zwische 0 und 1 genauso groß ist wie die Zahlenmenge zwischen 1 und unendlich. allerdings weiß ich nicht, nach welchen begriff ich da googlen soll oder wie ich das erklären bzw beweisen kann. könnte mir da jemand helfen? und hat sonst noch jemand mögliche rechenverfahren zu meinem thema?

Gruß

the9ismine_




        
Bezug
zahlenmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 23.02.2008
Autor: felixf

Hallo

> Hallo. Zuersteinmal bin ich mir nicht sicher, ob ich das
> richtigen unterbegriff für meine fragestellung gewählt
> habe, aber das kann ein admin sicher noch ändern.

Deswegen hab ich deine Frage mal in das Mengentheorie-Forum verschoben :)

> nun zu meiner Frage:
>   Für meine Facharbeit über die Projektion von Koordinaten
> auf der Kugeloberfläche, soll ich beweisen, dass die Zahlen
> Menge zwische 0 und 1 genauso groß ist wie die Zahlenmenge
> zwischen 1 und unendlich.

Eine kleine Nachfrage: gehoeren 0 und/oder 1 jeweils mit zur Menge oder nicht? An der Aussage (dass die Mengen genauso gross sind) aendert das nichts, aber an einer Funktion die das zeigt schon.

> allerdings weiß ich nicht, nach
> welchen begriff ich da googlen soll oder wie ich das
> erklären bzw beweisen kann. könnte mir da jemand helfen?

Erstmal ein paar Fachwoerter, mit denen du weiterkommst. Die Anzahl der Elemente einer Menge bezeichnet man auch als deren []Maechtigkeit oder Kardinalitaet. Weiterhin sagt man, dass zwei Mengen $A, B$ gleichmaechtig sind, wenn es eine []Bijektion [mm] $\varphi [/mm] : A [mm] \to [/mm] B$ gibt, also eine Abbildung, die []bijektiv ist. (Eine bijektive Funktion hat eine Umkehrabbildung: wenn du also eine Umkehrabbildung angeben kannst, die fuer jeden Bildpunkt der eigentlichen Funktion definiert ist, dann ist die Funktion bijektiv.)

Hier mal zwei Beispiele:

1) Die Mengen $[0, 1]$ und $[1, 2]$ sind gleichmaechtig:

Eine Bijektion ist [mm] $\varphi [/mm] : [0, 1] [mm] \to [/mm] [1, 2]$, $x [mm] \mapsto [/mm] x + 1$. Diese ist bijektiv mit Umkehrfunktion [mm] $\varphi^{-1} [/mm] : [1, 2] [mm] \to [/mm] [0, 1]$, $x [mm] \mapsto [/mm] x - 1$: damit ist naemlich [mm] $\varphi(\varphi^{-1}(y)) [/mm] = y$ fuer alle $y [mm] \in [/mm] [1, 2]$ und [mm] $\varphi^{-1}(\varphi(x)) [/mm] = x$ fuer alle $x [mm] \in [/mm] [0, 1]$.

2) Die Mengen $[1, 2]$ und [mm] $[\frac{1}{2}, [/mm] 1]$ sind gleichmaechtig:

Eine Bijektion ist [mm] $\psi [/mm] : [1, 2] [mm] \to [\frac{1}{2}, [/mm] 1]$, $x [mm] \mapsto \frac{1}{x}$. [/mm] Die Umkehrfunktion ist ebenfalls gegen durch [mm] $\frac{1}{x}$, [/mm] formal: [mm] $\psi^{-1} [/mm] : [mm] [\frac{1}{2}, [/mm] 1] [mm] \to [/mm] [1, 2]$, $x [mm] \mapsto \frac{1}{x}$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]