www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrazu Idealen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - zu Idealen
zu Idealen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zu Idealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Mi 17.02.2010
Autor: piccolo1986

Aufgabe
Seien I und J zwei Ideale in [mm] \IZ. [/mm]
z.z.: [mm] IJ=(I+J)(I\cap [/mm] J)

kann mir jemand bei der Frage helfen, komm da irgendwie nicht weiter

        
Bezug
zu Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Mi 17.02.2010
Autor: statler

Hi!

> Seien I und J zwei Ideale in [mm]\IZ.[/mm]
>  z.z.: [mm]IJ=(I+J)(I\cap[/mm] J)
>  kann mir jemand bei der Frage helfen, komm da irgendwie
> nicht weiter

Erstmal finde ich, daß die Frage ein bißchen wenig Drumherum zeigt, also Gruß und Abspann usw.

In Z sind alle Ideale Hauptideale, was bedeutet das hier für diese Aufgabe?

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
zu Idealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Mi 17.02.2010
Autor: piccolo1986

also Hauptideal bedeutet ja, dass die Ideale je von nur einem Element erzeugt werden, ich seh aber nicht so recht, wie ich das hier nutzen kann :-(


mfg
piccolo

Bezug
                        
Bezug
zu Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mi 17.02.2010
Autor: SEcki


> also Hauptideal bedeutet ja, dass die Ideale je von nur
> einem Element erzeugt werden, ich seh aber nicht so recht,
> wie ich das hier nutzen kann :-(

Welches Element erzeugt I+J, welches den Schnitt? denk mal an ggT, kgV, Formeln dafür ...

SEcki

Bezug
                                
Bezug
zu Idealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 17.02.2010
Autor: piccolo1986


> > also Hauptideal bedeutet ja, dass die Ideale je von nur
> > einem Element erzeugt werden, ich seh aber nicht so recht,
> > wie ich das hier nutzen kann :-(
>  
> Welches Element erzeugt I+J, welches den Schnitt? denk mal
> an ggT, kgV, Formeln dafür ...
>  

also der Schnitt von I und J wird erzeugt vom kgV. also da es ja um Ideale aus [mm] \IZ [/mm] geht und das alles Hauptideale sind, kann ich ja annehmen, dass I von a und J von b erzeugt wird, also wenn dann
k=kgV(a,b) dann ist [mm] I\cap J=k\IZ [/mm]

für I+J gilt dann, dass man denn ggt(a,b) benötigt:
g=ggt(a,b)=ra+sb für geeignete r uns s aus [mm] \IZ [/mm]
Also [mm] I+J=g\IZ [/mm]

für I*J gilt dann: [mm] I*J=a*b\IZ [/mm]

ist das bis hierher soweit richtig?

dann hab ich insgesamt: (ich lass das [mm] \IZ [/mm] mal weg)
a*b=kgv(a,b)*ggt(a,b)

dies gilt doch allgemein oder? und dann wär ich also fertig? bin mir da unsicher, ob das so immer gilt.

mfg
piccolo

Bezug
                                        
Bezug
zu Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Do 18.02.2010
Autor: SEcki


> ist das bis hierher soweit richtig?

Ja. (Solange irh das alles bewiesen habt, sonst musst du es noch beweisen!)

> dann hab ich insgesamt: (ich lass das [mm]\IZ[/mm] mal weg)
>  a*b=kgv(a,b)*ggt(a,b)
>  
> dies gilt doch allgemein oder?

Ja.

> und dann wär ich also
> fertig? bin mir da unsicher, ob das so immer gilt.

Damit wäre alles gezeigt.

SEcki

Bezug
                                        
Bezug
zu Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Do 18.02.2010
Autor: tobit09

Hallo piccolo,

> dann hab ich insgesamt: (ich lass das [mm]\IZ[/mm] mal weg)
>  a*b=kgv(a,b)*ggt(a,b)
>  
> dies gilt doch allgemein oder?

Fast. kgV und ggT sind (nach der Definition, die ich kenne) nur bis auf Assoziiertheit (also Multiplikation mit Einheiten) eindeutig (d.h. in [mm] $\IZ$ [/mm] nur bis auf das Vorzeichen). Es gilt somit i.A. nur $a*b$ ist assoziiert zu [mm] $\operatorname{kgV}(a,b)*\operatorname{ggT}(a,b)$. [/mm] Das reicht aber, damit die beiden davon erzeugten Ideale übereinstimmen.

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]