www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometriezusammenhängend
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - zusammenhängend
zusammenhängend < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zusammenhängend: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 So 19.12.2010
Autor: icarus89

Aufgabe
Zeigen oder widerlegen Sie:
1) das Bild eines zusammenhängenden Raumes unter einer stetigen Abbildung ist zusammenhängend.

2) das Bild eines wegzusammenhängenden Raumes unter einer stetigen Abbildung ist zusammenhängend.

Heyho!

Also irgendwie denkt man erstmal anschaulich, dass beide Behauptungen stimmen, wenn man so an eine stetige Abbildung von [mm] \IR [/mm] nach [mm] \IR [/mm] denkt....
Aber wenn ich jetzt raten müsste, würde ich sagen, dass die erste Behauptung falsch ist und die zweite richtig, wenn beide richtig wären, so würde ja aus der einer die Richtigkeit der anderen folgen oder andersherum, da ja jeder wegzusammenhängender Raum zusammenhängend ist. Und dann wäre das doch zu einfach, weil man nur eins machen müsste.

Also gibt es bei 1) bestimmt irgendein wirres Gegenbeispiel...

Und wie man nun 2) zeigen sollte? Mmh? Zu zeigen ist, ja, wenn X wegzusammenhängend [mm] f:X\to [/mm] Y stetig und [mm] Y=U\cup [/mm] V offene Vereinigung disjunkter Mengen, dass dann entweder U oder V leer sind...
Ich seh da irgendwie noch nicht den "Zusammenhang"...

Ist meine Vermutung denn nun erstmal korrekt?

        
Bezug
zusammenhängend: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 So 19.12.2010
Autor: felixf

Moin!

> Zeigen oder widerlegen Sie:
> 1) das Bild eines zusammenhängenden Raumes unter einer
> stetigen Abbildung ist zusammenhängend.
>  
> 2) das Bild eines wegzusammenhängenden Raumes unter einer
> stetigen Abbildung ist zusammenhängend.
>  
> Also irgendwie denkt man erstmal anschaulich, dass beide
> Behauptungen stimmen, wenn man so an eine stetige Abbildung
> von [mm]\IR[/mm] nach [mm]\IR[/mm] denkt....

[ok]

>  Aber wenn ich jetzt raten müsste, würde ich sagen, dass
> die erste Behauptung falsch ist und die zweite richtig,
> wenn beide richtig wären, so würde ja aus der einer die
> Richtigkeit der anderen folgen oder andersherum, da ja
> jeder wegzusammenhängender Raum zusammenhängend ist. Und
> dann wäre das doch zu einfach, weil man nur eins machen
> müsste.

Nur weil es einfach waer, muss es noch lange nicht stimmen!

> Also gibt es bei 1) bestimmt irgendein wirres
> Gegenbeispiel...

Nein, aber einen einfachen Beweis. Beachte, dass Urbilder offener (abgeschlossener) Mengen unter stetigen Abbildungen wieder offen (abgeschlossen) sind.

> Und wie man nun 2) zeigen sollte? Mmh?

Das folgt aus 1).

Ansonsten kann man erst zeigen: ist $f$ stetig und $X$ wegzusammenhaengend, so ist $f(X)$ auch wegzusammenhaengend. Das ist ziemlich einfach.

Und aus wegzusammenhaengend folgt zusammenhaengend.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]