www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikzweidimensionale Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - zweidimensionale Verteilung
zweidimensionale Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweidimensionale Verteilung: gemeinsame Dichtefunktion
Status: (Frage) beantwortet Status 
Datum: 14:11 Di 29.07.2008
Autor: Jana1972

Aufgabe
Eine zweidimensionale gleichverteilte Zufallsvariable (X,Y) ist definiert für:

[mm] 2\le [/mm] x [mm] \le [/mm]
0 [mm] \le [/mm] y [mm] \le [/mm] 5

Wie lautet die gemeinsame Dichefunktion f(x,y) ?  

Das Ergebnis soll lauten: f(x,y) = 0,1.
Leider weiß ich überhaupt nicht, wie man auf diese Lösung kommt. Ich hab's zuerst mit inegrieren probiert, aber da war ich offenbar auf dem Holzweg. Kann mir jemand einen Tipp geben?

Vielen Dank im Voraus!

        
Bezug
zweidimensionale Verteilung: fehlt da nicht etwas?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Di 29.07.2008
Autor: LazaruZ


> [mm]2\le[/mm] x [mm]\le[/mm] ??

fehlt da nicht etwas?

Bezug
                
Bezug
zweidimensionale Verteilung: Natürlich! Sorry!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Di 29.07.2008
Autor: Jana1972

vollständig lautet es:

2 [mm] \le [/mm] x [mm] \le [/mm] 4
0 [mm] \le [/mm] y [mm] \le [/mm] 5

Vielen Dank für den Hinweis!

Bezug
                        
Bezug
zweidimensionale Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Di 29.07.2008
Autor: abakus


> vollständig lautet es:
>
> 2 [mm]\le[/mm] x [mm]\le[/mm] 4
>  0 [mm]\le[/mm] y [mm]\le[/mm] 5
>  
> Vielen Dank für den Hinweis!  

Das ist eine Rechteckfläche der Größe 10 (Flächeneinheiten). Wenn die Zufallsgröße gleichverteilt ist, werden je zwei gleich große Flächenteile mit der selben Wahrscheinlichkeit getroffen. Also muss die Dichte für jede der 10 Flächeneinheiten 0,1 betragen, weil 10*0,1=1 ist.
Gruß Abakus


Bezug
                                
Bezug
zweidimensionale Verteilung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Di 29.07.2008
Autor: Jana1972

Hallo Abakus,

vielen Dank für Deine Antwort! So leuchtet mir das auch ein. :-)

Viele Grüße
Jana

Bezug
        
Bezug
zweidimensionale Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Di 29.07.2008
Autor: Al-Chwarizmi


> Eine zweidimensionale gleichverteilte Zufallsvariable (X,Y)
> ist definiert für:
>
> [mm]2\le[/mm] x [mm]\le[/mm]
> 0 [mm]\le[/mm] y [mm]\le[/mm] 5
>  
> Wie lautet die gemeinsame Dichefunktion f(x,y) ?
> Das Ergebnis soll lauten: f(x,y) = 0,1.
> Leider weiß ich überhaupt nicht, wie man auf diese Lösung
> kommt. Ich hab's zuerst mit inegrieren probiert, aber da
> war ich offenbar auf dem Holzweg. Kann mir jemand einen
> Tipp geben?
>
> Vielen Dank im Voraus!


Was LazaruZ gerade nachgefragt hat, ist wohl einfach die
gesuchte Grösse, nämlich die obere Grenze für x.
Wenn du die konstante Dichtefunktion f(x,y) über ein
Rechteck in der x-y-Ebene integrierst, ist das Ergebnis
einfach  Rechtecksfläche * Dichte. Da f eine Wahrscheinlich-
keitsdichte sein soll, muss

[mm] \integral_{-\infty}^{\infty}\integral_{-\infty}^{\infty}f(x,y)*dx*dy=1 [/mm] sein.

Klingelt's ?

LG    al-Chw.  


Bezug
                
Bezug
zweidimensionale Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Di 29.07.2008
Autor: Jana1972

Hallo Al-Chwarizmi,

vielen Dank für Deine Antwort!
Genau auf diesem Wege hatte ich's tatsächlich probiert:

[mm] \integral_{2}^{4} \integral_{0}^{5} x,y\, [/mm] dx dy

Aber leider ist das offenbar völliger Blödsinn. Könnte ich noch einen Tipp bekommen?
Herzlichen Dank im Voraus!
Jana

Bezug
                        
Bezug
zweidimensionale Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Di 29.07.2008
Autor: luis52


> Hallo Al-Chwarizmi,
>
> vielen Dank für Deine Antwort!
> Genau auf diesem Wege hatte ich's tatsächlich probiert:
>
> [mm]\integral_{2}^{4} \integral_{0}^{5} x,y\,[/mm] dx dy
>
> Aber leider ist das offenbar völliger Blödsinn. Könnte ich
> noch einen Tipp bekommen?
> Herzlichen Dank im Voraus!
> Jana


Bestimme c mit

[mm] $\integral_{2}^{4} \integral_{0}^{5} c\, dx\, [/mm] dy =1$.

vg Luis

Bezug
                                
Bezug
zweidimensionale Verteilung: Vielen Dank!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Di 29.07.2008
Autor: Jana1972

Hallo Luis,

vielen Dank für Deinen weiteren Tipp! :-) Nun sehe ich auch, wo ich den Fehler gemacht habe.

Herzliche Grüße
Jana

Bezug
                
Bezug
zweidimensionale Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Di 29.07.2008
Autor: Jana1972

Hallo Al-Chwarizmi,

vielen Dank nochmals für Deinen Tipp. Habe gerade gesehen, dass meine Antwort missverständlich war - natürlich hat Deine Antwort zur richtigen Lösung geführt, nur war meine Interpretation Blödsinn.

Viele Grüße
Jana

Bezug
        
Bezug
zweidimensionale Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Di 29.07.2008
Autor: luis52

Moin Jana,

deiner Loesung entnehme ich, dass in der Aufgabenstellung noch etwas
mehr steht, naemlich ungefaehr $f(x,y)=c$  fuer
$2 [mm] \le [/mm]  x  [mm] \le [/mm]  4$, $0  [mm] \le [/mm] y  [mm] \le [/mm]  5$ und $f(x,y)=0$, sonst.

Stell dir das mal bildlich vor: Es handelt sich um einen Kasten mir den
Kantenlaengen $4-2=2$, $5-0=5$ und $c$. Dessen Volumen ist [mm] $2\times 5\times [/mm] c$,
was aber auch 1 ist, also $10c=1$.

vg Luis                    

Bezug
                
Bezug
zweidimensionale Verteilung: Vielen Dank!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 Di 29.07.2008
Autor: Jana1972

Hallo Luis,

in der Aufgabenstellung war tatsächlich nicht mehr gegeben. Jedoch leuchtet mir jetzt Dank Deiner Erklärung der Lösungsweg ein.

Vielen, herzlichen Dank und viele Grüße
Jana

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]