www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und Differenzierenzweimalige integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrieren und Differenzieren" - zweimalige integration
zweimalige integration < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweimalige integration: Rechenschritt in Musterlösung
Status: (Frage) beantwortet Status 
Datum: 13:29 Do 26.07.2018
Autor: fonten

Aufgabe
[mm] k_p(\phi) [/mm] = [mm] k_0(1+ a\bruch{\phi}{\pi}) [/mm]
Man erhält mit
[mm] \bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)] [/mm]
das Potential durch zweimalige unbestimmte Integration zu
[mm] \Phi(\phi)= \bruch{C \pi}{k_0 a} [/mm] ln (1+ [mm] \bruch{a}{\pi} \phi) [/mm] +D

Hallo,
In einer Musterlösung verstehe ich den obigen Rechenschritt nicht.
Ich hätte jetzt bei der ersten Integration nur die Ableitung "weggestrichen" und eine Konstante addiert:
[mm] \bruch{1}{\rho^2} ([k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)] [/mm] +C)

Bei der zweiten Integration sieht es dann so aus, als ob man die partielle Integration anwenden könnte
[mm] \integral{f(x)g'(x) dx} [/mm] = f(x)g(x)- [mm] \integral{f'(x)g(x) dx} [/mm]
[mm] \bruch{1}{\rho^2} \integral{k_p(\phi)\Phi'(\phi) +C d\phi} [/mm] = [mm] \bruch{1}{\rho^2} \vektor{ k_p(\phi)\Phi(\phi)- \integral{k_p'(\phi)\Phi(\phi) d\phi}+ C\phi +D} [/mm]
So komme ich mit dem Integral über [mm] \Phi(\phi) [/mm] aber nicht weiter.

Wie gehen die beiden Integrationsschritte nacheinander?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Grüße
fonten

        
Bezug
zweimalige integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Do 26.07.2018
Autor: Fulla


> [mm]k_p(\phi)[/mm] = [mm]k_0(1+ a\bruch{\phi}{\pi})[/mm]
> Man erhält mit
> [mm]\bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)][/mm]

>

> das Potential durch zweimalige unbestimmte Integration zu
> [mm]\Phi(\phi)= \bruch{C \pi}{k_0 a}[/mm] ln (1+ [mm]\bruch{a}{\pi} \phi)[/mm]
> +D
> Hallo,
> In einer Musterlösung verstehe ich den obigen
> Rechenschritt nicht.
> Ich hätte jetzt bei der ersten Integration nur die
> Ableitung "weggestrichen" und eine Konstante addiert:
> [mm]\bruch{1}{\rho^2} ([k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)][/mm]
> +C)

>

> Bei der zweiten Integration sieht es dann so aus, als ob
> man die partielle Integration anwenden könnte
> [mm]\integral{f(x)g'(x) dx}[/mm] = f(x)g(x)- [mm]\integral{f'(x)g(x) dx}[/mm]

>

> [mm]\bruch{1}{\rho^2} \integral{k_p(\phi)\Phi'(\phi) +C d\phi}[/mm]
> = [mm]\bruch{1}{\rho^2} \vektor{ k_p(\phi)\Phi(\phi)- \integral{k_p'(\phi)\Phi(\phi) d\phi}+ C\phi +D}[/mm]

>

> So komme ich mit dem Integral über [mm]\Phi(\phi)[/mm] aber nicht
> weiter.

>

> Wie gehen die beiden Integrationsschritte nacheinander?


Hallo fonten,

du brauchst eine Gleichung, die du zweimal integrierst. Ich vermute mal, dass es
    [mm]\bruch{1}{\rho^2} \bruch{d}{d\phi}[k_p(\phi) \bruch{d}{d \phi} \Phi(\phi)]=0[/mm]
heißen soll... Löse das nach [mm]\Phi(\phi)[/mm] auf (und setze unterwegs die Definition von [mm]k_p(\phi)[/mm] ein)...

Lieben Gruß,
Fulla

Bezug
                
Bezug
zweimalige integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:56 Do 26.07.2018
Autor: fonten

Hallo Fulla,
danke für die schnelle Antwort!
Ich glaube, den Abtippfehler habe ich gemacht, weil das auch mein Denkfehler war.

Ich habe jetzt im ersten Schritt wie vorhin beschrieben integriert, dann das Ganze nach [mm] \bruch{d}{d\phi}\Phi(\phi) [/mm] umgestellt.

[mm] \bruch{d}{d\phi} \Phi(\phi) [/mm] = - c [mm] \rho^2 [/mm] * [mm] \bruch{1}{k_p(\phi)} [/mm]

Wenn ich jetzt das [mm] k_p(\phi) [/mm] einsetze und integriere:

[mm] \integral \bruch{d}{d\phi} \Phi(\phi) [/mm] = - c [mm] \rho^2 [/mm] * [mm] \integral \bruch{1}{k_0(1+a\bruch{\phi}{\pi})} [/mm]

Damit ich den Nenner beim Integrieren zum Logarithmus machen kann, erweitere ich mit [mm] \bruch{\bruch{a}{pi}}{\bruch{a}{pi}} [/mm] und bekomme das gewünschte Ergebnis

beste Grüße
fonten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]