zyklische Galoiserw vom Grad 4 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:46 Sa 22.01.2011 | Autor: | Lippel |
Aufgabe | Sei $L [mm] \subset \IC$ [/mm] ein Teilkörper, sodass [mm] $L/\IQ$ [/mm] zyklische Galoiserweiterung vom Grad 4 ist. Man zeige. Es besitzt [mm] $L/\IQ$ [/mm] genau einen echten Zwischenkörper E, und für diesen gilt $E [mm] \subset \IR$. [/mm] |
Hallo,
der letzte Teil der Frage bereitet mir Schwierigkeiten.
Also, ich weiß dass $ord [mm] \: Gal(L/\IQ) [/mm] = 4$ und [mm] $Gal(L/\IQ)\:$ [/mm] zyklisch $ [mm] \Rightarrow Gal(L/\IQ) \cong \IZ/4\IZ$. [/mm] Damit ist [mm] $\{0,2\}$ [/mm] die einzige echte Untergruppe der Galoisgruppe und der zugehörige Fixkörper E der einzige echte Zwischenkörper der Erweiterung. Für diesen gilt [mm] $[E:\IQ] [/mm] = [mm] \frac{[L:\IQ]}{[\IZ/4\IZ:\{0,2\}]}=2$.
[/mm]
Stimmt das bis hier?
Nun bleibt zu zeigen, dass $E [mm] \subset \IR$. [/mm] Wie kann ich hier ran gehen?
LG Lippel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:05 So 23.01.2011 | Autor: | felixf |
Moin!
> Sei [mm]L \subset \IC[/mm] ein Teilkörper, sodass [mm]L/\IQ[/mm] zyklische
> Galoiserweiterung vom Grad 4 ist. Man zeige. Es besitzt
> [mm]L/\IQ[/mm] genau einen echten Zwischenkörper E, und für diesen
> gilt [mm]E \subset \IR[/mm].
> Hallo,
>
> der letzte Teil der Frage bereitet mir Schwierigkeiten.
> Also, ich weiß dass [mm]ord \: Gal(L/\IQ) = 4[/mm] und
> [mm]Gal(L/\IQ)\:[/mm] zyklisch [mm]\Rightarrow Gal(L/\IQ) \cong \IZ/4\IZ[/mm].
> Damit ist [mm]\{0,2\}[/mm] die einzige echte Untergruppe der
> Galoisgruppe und der zugehörige Fixkörper E der einzige
> echte Zwischenkörper der Erweiterung. Für diesen gilt
> [mm][E:\IQ] = \frac{[L:\IQ]}{[\IZ/4\IZ:\{0,2\}]}=2[/mm].
> Stimmt das
> bis hier?
Ja.
> Nun bleibt zu zeigen, dass [mm]E \subset \IR[/mm]. Wie kann ich hier
> ran gehen?
Ueberlege dir zuerst, dass der eindeutige nicht-triviale Automorphismus von $E$ im Fall $E [mm] \not\subseteq \IR$ [/mm] durch die komplexe Konjugation gegeben ist. Sei [mm] $\sigma [/mm] : L [mm] \to [/mm] L$ ebenfalls die komplexe Konjugation. Da $E$ nicht im Fixkoerper von [mm] $\sigma$ [/mm] liegt (falls $E [mm] \not\subseteq \IR$), [/mm] so muss [mm] $\sigma$ [/mm] ein Erzeuger der Galoisgruppe von $L / [mm] \IQ$ [/mm] sein (warum?). Jedoch hat [mm] $\sigma$ [/mm] die Ordnung 2 und nicht 4, womit dies einen Widerspruch gibt.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:58 Mo 24.01.2011 | Autor: | Lippel |
Hallo,
> > Nun bleibt zu zeigen, dass [mm]E \subset \IR[/mm]. Wie kann ich hier
> > ran gehen?
>
> Ueberlege dir zuerst, dass der eindeutige nicht-triviale
> Automorphismus von [mm]E[/mm] im Fall [mm]E \not\subseteq \IR[/mm] durch die
> komplexe Konjugation gegeben ist.
Sei [mm] $\alpha \in E\backslash{\IR} \Rightarrow$ [/mm] Da [mm] $[E:\IQ] [/mm] = 2$ ist [mm] $deg\: min_\IQ(\alpha) [/mm] = 2$. Nach der pq-Formel ist [mm] $\alpha [/mm] = a+bi, a [mm] \in \IQ, [/mm] b [mm] \in \IR \Rightarrow \overline{\alpha} [/mm] = a-bi = 2a - [mm] \alpha \in [/mm] E$. Damit ist also zu jedem Element aus E das komplex Konjugierte auch in E.
Damit ist die komplexe Konjugation ein [mm] $\IQ$-Automorphismus [/mm] von E. Und da [mm] $[E:\IQ] [/mm] = 2$ ist $ord [mm] \: Gal(L/\IQ) [/mm] = 2 [mm] \Rightarrow Gal(L/\IQ)$ [/mm] enthält nur die Identität und die komlpexe Konjugation.
> Sei [mm]\sigma : L \to L[/mm]
> ebenfalls die komplexe Konjugation. Da [mm]E[/mm] nicht im
> Fixkoerper von [mm]\sigma[/mm] liegt (falls [mm]E \not\subseteq \IR[/mm]), so
> muss [mm]\sigma[/mm] ein Erzeuger der Galoisgruppe von [mm]L / \IQ[/mm] sein
> (warum?).
Da [mm] $L/\IQ$ [/mm] zyklische Erweiterung existiert ein [mm] $\tau \in Aut_\IQ(L): Gal(L/\IQ) [/mm] = [mm] \{1,\tau,\tau^2,\tau^3\} \Rightarrow \{1,\tau^2\}$ [/mm] ist die einzige echte Untergruppe der Galoisgruppe und entspricht gerade dem Zwischenkörper E. Da aber E nicht im Fixkörper von [mm] $\sigma \in Gal(L/\IQ)$ [/mm] liegt, ist [mm] $\sigma [/mm] = [mm] \tau$ [/mm] oder [mm] $\sigma [/mm] = [mm] \tau^3 \Rightarrow Gal(L/\IQ) [/mm] = [mm] <\sigma>$. [/mm] Damit ergibt sich dann der Widerspruch den du beschrieben hast.
Stimmt das so?
Vielen Dank für deine Hilfe Felix. Die Aufgabe hat sehr zum allgemeinen Verständnis beigetragen.
LG Lippel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:53 Mo 24.01.2011 | Autor: | felixf |
Moin!
> > > Nun bleibt zu zeigen, dass [mm]E \subset \IR[/mm]. Wie kann ich hier
> > > ran gehen?
> >
> > Ueberlege dir zuerst, dass der eindeutige nicht-triviale
> > Automorphismus von [mm]E[/mm] im Fall [mm]E \not\subseteq \IR[/mm] durch die
> > komplexe Konjugation gegeben ist.
>
> Sei [mm]\alpha \in E\backslash{\IR} \Rightarrow[/mm] Da [mm][E:\IQ] = 2[/mm]
> ist [mm]deg\: min_\IQ(\alpha) = 2[/mm]. Nach der pq-Formel ist
> [mm]\alpha = a+bi, a \in \IQ, b \in \IR \Rightarrow \overline{\alpha} = a-bi = 2a - \alpha \in E[/mm].
Warum ist $a [mm] \in \IQ$? [/mm] Das musst du genauer begruenden.
Du kannst dir uebrigens auch ueberlegen, dass jede quadratische Erweiterung von [mm] $\IQ$ [/mm] von der Form [mm] $\IQ(\sqrt{D})$ [/mm] ist mit einer quadratfreien ganzen Zahl $D [mm] \neq [/mm] 0, 1$. Weiterhin gilt [mm] $\IQ(\sqrt{D}) \subseteq \IR \Leftrightarrow [/mm] D > 0$, und der nicht-triviale Automorphismus ist durch [mm] $\sqrt{D} \mapsto -\sqrt{D}$ [/mm] gegeben.
> Damit ist also zu jedem Element aus E das komplex
> Konjugierte auch in E.
> Damit ist die komplexe Konjugation ein [mm]\IQ[/mm]-Automorphismus
> von E. Und da [mm][E:\IQ] = 2[/mm] ist [mm]ord \: Gal(L/\IQ) = 2 \Rightarrow Gal(L/\IQ)[/mm]
> enthält nur die Identität und die komlpexe Konjugation.
> > Sei [mm]\sigma : L \to L[/mm]
> > ebenfalls die komplexe Konjugation. Da [mm]E[/mm] nicht im
> > Fixkoerper von [mm]\sigma[/mm] liegt (falls [mm]E \not\subseteq \IR[/mm]), so
> > muss [mm]\sigma[/mm] ein Erzeuger der Galoisgruppe von [mm]L / \IQ[/mm] sein
> > (warum?).
>
> Da [mm]L/\IQ[/mm] zyklische Erweiterung existiert ein [mm]\tau \in Aut_\IQ(L): Gal(L/\IQ) = \{1,\tau,\tau^2,\tau^3\} \Rightarrow \{1,\tau^2\}[/mm]
> ist die einzige echte Untergruppe der Galoisgruppe und
> entspricht gerade dem Zwischenkörper E. Da aber E nicht im
> Fixkörper von [mm]\sigma \in Gal(L/\IQ)[/mm] liegt, ist [mm]\sigma = \tau[/mm]
> oder [mm]\sigma = \tau^3 \Rightarrow Gal(L/\IQ) = <\sigma>[/mm].
> Stimmt das so?
Ja. (Bis auf das "Problem" oben.)
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:04 Mo 24.01.2011 | Autor: | Lippel |
Hallo, danke für die Antwort!
> > Sei [mm]\alpha \in E\backslash{\IR} \Rightarrow[/mm] Da [mm][E:\IQ] = 2[/mm]
> > ist [mm]deg\: min_\IQ(\alpha) = 2[/mm]. Nach der pq-Formel ist
> > [mm]\alpha = a+bi, a \in \IQ, b \in \IR \Rightarrow \overline{\alpha} = a-bi = 2a - \alpha \in E[/mm].
>
> Warum ist [mm]a \in \IQ[/mm]? Das musst du genauer begruenden.
Da [mm] $min_\IQ(\alpha)$ [/mm] normiert vom Grad 2, existieren $p,q [mm] \in \IQ: min_\IQ(\alpha) [/mm] = [mm] X^2+pX+q$. [/mm] Damit sind die Nullstellen von [mm] $min_\IQ(\alpha)$ [/mm] gegeben durch: [mm] $-\frac{p}{2}\pm\sqrt{\frac{p^2}{4}-q}$. [/mm] Hier ist [mm] $\sqrt{\frac{p^2}{4}-q}=i\sqrt{q-\frac{p^2}{4}}$ [/mm] imaginär, da ja eine Nullstelle des Polynoms, nämlich [mm] $\alpha$ [/mm] echt komplex ist. Der Realteil beider Nullstellen ist aber rational, nämlich [mm] $-\frac{p}{2}$. [/mm] Damit existiert $a [mm] \in \IQ, [/mm] b [mm] \in \IR: \alpha=a+bi$.
[/mm]
Oder übersehe ich da etwas?
LG Lippel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:17 Mo 24.01.2011 | Autor: | felixf |
Moin,
> > > Sei [mm]\alpha \in E\backslash{\IR} \Rightarrow[/mm] Da [mm][E:\IQ] = 2[/mm]
> > > ist [mm]deg\: min_\IQ(\alpha) = 2[/mm]. Nach der pq-Formel ist
> > > [mm]\alpha = a+bi, a \in \IQ, b \in \IR \Rightarrow \overline{\alpha} = a-bi = 2a - \alpha \in E[/mm].
> >
> > Warum ist [mm]a \in \IQ[/mm]? Das musst du genauer begruenden.
>
> Da [mm]min_\IQ(\alpha)[/mm] normiert vom Grad 2, existieren [mm]p,q \in \IQ: min_\IQ(\alpha) = X^2+pX+q[/mm].
> Damit sind die Nullstellen von [mm]min_\IQ(\alpha)[/mm] gegeben
> durch: [mm]-\frac{p}{2}\pm\sqrt{\frac{p^2}{4}-q}[/mm]. Hier ist
> [mm]\sqrt{\frac{p^2}{4}-q}=i\sqrt{q-\frac{p^2}{4}}[/mm] imaginär,
> da ja eine Nullstelle des Polynoms, nämlich [mm]\alpha[/mm] echt
> komplex ist. Der Realteil beider Nullstellen ist aber
> rational, nämlich [mm]-\frac{p}{2}[/mm]. Damit existiert [mm]a \in \IQ, b \in \IR: \alpha=a+bi[/mm].
>
> Oder übersehe ich da etwas?
nein, so ist's richtig
LG Felix
|
|
|
|