www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteLänge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Länge
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Länge

Definition Länge


  • Länge eines Vektors
  • Länge eines Intervalls
  • (Bogen-) Länge einer Funktionskurve
  • Länge einer Kurve (allgemein)
    -=Schule=-

Definition Länge eines Vektors

Unter dem Betrag eines Vektors $ \vec a $ versteht man die Länge der zu $ \vec a $ gehörenden Pfeile.
Der Betrag wird mit $ |\vec a| $ bezeichnet.

Kennt man die Komponenten des Vektors $ \vec a $ in einem kartesischen Koordinatensystem, so kann man seinen Betrag mithilfe des Satzes des Pythagoras berechnen:


$ \IR^2: \vec a = \begin {pmatrix} a_1\\a_2 \end{pmatrix} \Rightarrow |\vec a| = \wurzel {a_1^{2} + a_2^{2}} $


$ \IR^2: \vec a = \begin {pmatrix} a_1\\a_2\\a_3 \end{pmatrix} \Rightarrow |\vec a| = \wurzel {a_1^{2} + a_2^{2} + a_3^{2}} $


Definition Länge eines Intervalls

Die Länge eines Intervalls $ [a,b] $ berechnet man durch: |b - a| .


Definition (Bogen-) Länge einer Funktionskurve

Sei $ f: [a,b]\to\IR $ eine differenzierbare Funktion, und $ G_f=\{(x,f(x))\ |\ x\in [a,b]\} $ ihr Graph.
Dann heißt
$ L_a^b(f)=\integral_a^b \wurzel{1+f'(t)^2} dt $
die Länge des Graphen von f über dem Intervall $ [a,b] $ .



Universität


Definition Länge einer Kurve

Sei $ f:[a,b]\to V $ eine Kurve in V.
Dann heißt das Supremum über die Längen aller Streckenzüge $ [f(t_0),\ldots,f(t_m)] $, wobei $ t_0,\ldots,t_m $ alle endlichen Folgen $ a\le t_0\le \ldots\le t_m\le b $ durchläuft, die Länge
$ L_a^b(f)=L(f) $
von f.
Ist $ L(f)\le\infty $, so heißt f rektifizierbar.
Quelle: (1)


Wichtige Sätze


Satz Seien V ein normierter endlichdimensionaler $ \IR $-Vektorraum und $ f:I\to V $ eine stückweise stetig differenzierbare Kurve in V.
Dann ist f rektifizierbar, und es gilt
$ L_a^b(f)=\integral_a^b \|f'(t)\| dt $.

Quelle: (1)


Quelle: (1) isbn3411141816

Erstellt: Sa 20.11.2004 von informix
Letzte Änderung: Mo 22.11.2004 um 15:14 von informix
Weitere Autoren: Marc
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]