www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseitePotenzgesetz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Potenzgesetz
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Potenzgesetz

Potenzgesetze


Schule


Sofern die einzelnen Potenzen definiert sind, gelten folgende Rechengesetze:

P1)
a) $ a^r\cdot{}a^s=a^{r+s} $
"Potenzen mit gleicher Basis werden multipliziert, indem man die Exponenten addiert und die Basis beibehält."
b) $ \bruch{a^r}{a^s}=a^{r-s} $
"Potenzen mit gleicher Basis werden dividiert, indem man die Exponenten subtrahiert und die Basis beibehält."

P2)
a) $ a^r\cdot{}b^r=(a\cdot{}b)^r $
"Potenzen mit gleichem Exponenten werden multipliziert, indem man das Produkt der beiden Basiszahlen mit dem gemeinsamen Exponenten potenziert."
b) $ \bruch{a^r}{b^r}=\left(\bruch{a}{b}\right)^r $
"Potenzen mit gleichem Exponenten werden dividiert, indem man den Quotienten der beiden Basiszahlen mit dem gemeinsamen Exponenten potenziert."

P3)
$ \left(a^r\right)^s=a^{r\cdot{}s} $
"Eine Potenz wird potenziert, indem man die Exponenten multipliziert."

weitere Identitäten, die sofort aus der Definition einer Potenz folgen:

  • $ a^1=a $
  • $ 1^r=1 $

Ausserdem sind folgende Potenzen definiert:


  • $ a^0:=1 $
  • $ a^{-r}:=\bruch{1}{a^r} $
  • $ 0^0=n.d. $ undefiniert, in manchen Zusammenhängen ist aber die Festlegung $ 0^0:=1 $ sinnvoll (da $ \limes_{x\to0}x^x=1 $)


Bemerkungen.

Da Wurzeln nichts anderes sind als Potenzen mit gebrochenen Exponenten, gelten auch für Wurzelterme dieselben Regeln.
$ \wurzel[m]{a}=a^{\bruch{1}{m}} $ und
$ \wurzel[m]{a^n}=(a^n)^\bruch{1}{m}=a^\bruch{n}{m}=(\wurzel[m]{a})^n $

Beispiele.


Beweis.


Universität

Voraussetzungen und Behauptung


Bemerkungen.

Weitere Bemerkungen zum Verständnis des Satzes.


Beispiele.


Beweis.


Erstellt: Mo 08.11.2004 von Marc
Letzte Änderung: So 14.10.2007 um 18:37 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]