www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Trigonometrische Funktionen" - Ableitungen
Ableitungen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Mi 27.09.2006
Autor: wm0061

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir jemand bei den Ableitungen zu folgenden zwei Gleichungen helfen:
f(x)=(-cos(x))/(2*x*tan(x))
f(x)=sin( [mm] \wurzel{1-2*x} [/mm] )
Hatte zwar Matheleistung, aber Sinus und Kosinusfunktionen hat unsere Lehrerin bewusst ausgelasse.
MfG
wm0061

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Mi 27.09.2006
Autor: mathmetzsch

Hallo,

das ist auch nicht weiter schwer. Es gilt

f(x)=sin(x) [mm] \Rightarrow [/mm] f'(x)=cos(x) und

g(x)=cos(x) [mm] \Rightarrow [/mm] g'(x)=-sin(x).

Ich rechne dir mal Beispiel 2 vor. Die erste Funktion kannst du mit der Quotientenregel ableiten. Bei der zweiten benutzen wir die Kettenregel.

Los geht's:
[mm] f(x)=sin(\wurzel{1-2x}) [/mm]
Wir müssen hier zwei mal die Kettenregel anwenden. Unter der Wurzel steckt eine lineare Funktion und im Argument des Sinus die Wurzel. Also,
[mm] f'(x)=cos(\wurzel{1-2x})*\bruch{1}{2*\wurzel{1-2x}}*(-2) [/mm]
[mm] =\bruch{-2*cos(\wurzel{1-2x})}{2*\wurzel{1-2x}} [/mm]
[mm] =\bruch{-cos(\wurzel{1-2x})}{\wurzel{1-2x}} [/mm]

Wenn es dazu Fragen gibt, dann stell sie.

Viele Grüße
Daniel

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mi 27.09.2006
Autor: wm0061

Hi,
vielen Dank, ist jetzt klar, aber die erste verstehe ich immer noch nicht. Könntest d mir nochml helfn.
MfG
wm0061

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mi 27.09.2006
Autor: M.Rex

Schau mal hier nach, da habe ich die gleiche Frage schon beantwortet.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]