www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand ausrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - Abstand ausrechnen
Abstand ausrechnen < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Mo 28.02.2011
Autor: bla234

Aufgabe
Kürzester Abstand zwischen g:x und R


Ich komme einfach nicht auf das Ergebnis h=24. Ich habe zwei Ansätze aber beide harken irgendwie...


Variante 1:
===============
[mm] g:x=\pmat{-8\\-4\\1}+\lambda*\pmat{15\\12\\16} [/mm]
[mm] R=\pmat{22\\-4\\1} [/mm]

n*(x-r)=0

[mm] \pmat{15\\12\\16}*\pmat{x_{1}-22\\x_{2}+4\\x_{3}-1}=0 [/mm]

=> [mm] 15x_{1}+12x_{2}-16x_{3}-298=0 [/mm]

Schneiden:
15 [mm] (-8+15\lambda)+12(-4+12\lambda)+16(1+16\lambda)-298=0 [/mm]
[mm] \lambda=\bruch{30}{47} [/mm]

Bis hierher muss schon irgendwo ein Fehler sein. Aber ich finde ihn zum verrecken nicht.
Rechne ich das weiter kommt für den Abstand d=24,086 raus, was nah aber nicht völlig korrekt ist ;-P.

Variante 2:
===============

Kann mir jemand erklären wie ich mit der Formel
[mm] (OA+\nu*AS-OC)*AS=0 [/mm] auf das [mm] \nu [/mm] komme?

[mm] [\pmat{-8\\-4\\1}+\nu*\pmat{15\\12\\16}-\pmat{22\\-4\\1}]*\pmat{15\\12\\16}=0 [/mm]

In der ersten Zeile kommt für [mm] \nu=2 [/mm] raus in der zweiten [mm] \nu=0. [/mm] Das dann ein komischer Lotfußpunkt rauskommt ist irgenwie logisch. WAs mache ich falsch?

        
Bezug
Abstand ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mo 28.02.2011
Autor: leduart

Hallo
Var 1
15 $ [mm] (-8+15\lambda)+12(-4+12\lambda)+16(1+16\lambda)-298=0 [/mm] $
ist noch richtig, dein [mm] \lambda [/mm] daraus falsch.

Var 2. da hast du doch ein Skalarprodukt , wie kommst du auf eine erste und zweite Zeile?  du hast nur eine gl. für [mm] \mu. [/mm]
allerdings weiss ich nicht was du mit
$ [mm] (OA+\nu\cdot{}AS-OC)\cdot{}AS=0 [/mm] $
meinst
Gruss leduart


Bezug
                
Bezug
Abstand ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mo 28.02.2011
Autor: bla234

Variante 1:

Tomaten auf den Augen [mm] \lambda=\bruch{18}{25} [/mm]
Dann stimmt es.


Variante 2:

Wie komme ich also auf mein [mm] \nu? [/mm] Das eine ist die allgemeine Schreibweise in die ich dann eingesetzt habe...

Bezug
                        
Bezug
Abstand ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Mo 28.02.2011
Autor: MathePower

Hallo bla234,

> Variante 1:
>  
> Tomaten auf den Augen [mm]\lambda=\bruch{18}{25}[/mm]
>  Dann stimmt es.
>  
>
> Variante 2:
>  
> Wie komme ich also auf mein [mm]\nu?[/mm] Das eine ist die
> allgemeine Schreibweise in die ich dann eingesetzt habe...


Diese Formel ist nach [mm]\mu[/mm] aufzulösen:

[mm] (OA+\nu\cdot{}AS-OC)\cdot{}AS=0[/mm]

Wobei das zweite Mal-Zeichen hier das  Skalarprodukt bedeutet.

Besser so geschrieben:

[mm] (OA+\nu\cdot{}AS-OC) \*{}AS=0[/mm]

Dann ist "*" das  Skalarprodukt.


Gruss
MathePower



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]