www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Differentialrechnung
Differentialrechnung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 So 02.08.2009
Autor: Inspiration

Aufgabe
Ist f(x,y):= [mm] x*e^\bruch{-y}{x} [/mm] Lösung der Differentialgleichung:
[mm] x*\bruch{\partial^2 f}{\partial x \partial y}+2* (\bruch{\partial f}{\partial x} [/mm] + [mm] \bruch{\partial f}{\partial y}) [/mm] = [mm] y*\bruch{\partial^2 f}{\partial y^2} [/mm] ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Hallo!
Kann mir bitte jemand dabei helfen, diese Aufgabe zu lösen?
Ich weiß, dass man erst die Ableitungen machen muss, aber ich scheitere schon bei der Ableitung von [mm] \bruch{\partial f}{\partial x}, [/mm] da ich nicht weiß, wie man [mm] e^\bruch{-y}{x} [/mm] ableitet
wäre echt dankbar für einen anstatz!!

        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 So 02.08.2009
Autor: MathePower

Hallo Inspiration,

> Ist f(x,y):= [mm]x*e^\bruch{-y}{x}[/mm] Lösung der
> Differentialgleichung:
>  [mm]x*\bruch{\partial^2 f}{\partial x \partial y}+2* (\bruch{\partial f}{\partial x}[/mm]
> + [mm]\bruch{\partial f}{\partial y})[/mm] = [mm]y*\bruch{\partial^2 f}{\partial y^2}[/mm]
> ?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  Hallo!
>  Kann mir bitte jemand dabei helfen, diese Aufgabe zu
> lösen?
>  Ich weiß, dass man erst die Ableitungen machen muss, aber
> ich scheitere schon bei der Ableitung von [mm]\bruch{\partial f}{\partial x},[/mm]
> da ich nicht weiß, wie man [mm]e^\bruch{-y}{x}[/mm] ableitet
>  wäre echt dankbar für einen anstatz!!


Hier hältst Du y fest, und differenzierst [mm]e^\bruch{-y}{x}[/mm] nach x gemäß der Kettenregel in Verbindung mit der Quotientenregel.

Für die Differentiation nach y gilt analoges.


Gruß
MathePower

Bezug
                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 So 02.08.2009
Autor: Inspiration

wäre die ableitung von [mm] x*e^\bruch{-y}{x} [/mm] dann:
[mm] 1*e^\bruch{-y}{x} [/mm] + x*y*x^-2 [mm] *e^\bruch{-y}{x} [/mm] ?

gruß inspiration

Bezug
                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 So 02.08.2009
Autor: MathePower

Hallo Inspiration,

> wäre die ableitung von [mm]x*e^\bruch{-y}{x}[/mm] dann:
>  [mm]1*e^\bruch{-y}{x}[/mm] + x*y*x^-2 [mm]*e^\bruch{-y}{x}[/mm] ?


Ja. [ok]

Setze hier Klammern, damit es eindeutiger wird:

[mm]1*e^\bruch{-y}{x}[/mm] + x*y*x^(-2)[mm]*e^\bruch{-y}{x}[/mm]


Oder mit dem Formeleditor:

[mm]1*e^{-\bruch{y}{x}} + x*\bruch{y}{x^{2}}*e^{-\bruch{y}{x}}[/mm]


>  
> gruß inspiration


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]