www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLogarithmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Logarithmen
Logarithmen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Di 30.11.2010
Autor: Mathintosh

Aufgabe
Ein Binärcode hat 40'000 Felder; auf jedem Feld kann die Ziffer 0 oder die Ziffer 1 stehen. Wie viele Codes lassen sich bilden? Geben Sie das Resultat in Zehnerpotenz-Schreibweise an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

Ich habe mal folgendes gemacht:

[mm] 40'000^2 [/mm] Möglichkeiten

[mm] 10^log(40'000)^2 [/mm]

Ich komme nicht auf die Lösung von 1.584 * 10^12041 Codes.

Könnt ihr mir helfen?

        
Bezug
Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 30.11.2010
Autor: statler

Hi! Und [willkommenmr]

> Ein Binärcode hat 40'000 Felder; auf jedem Feld kann die
> Ziffer 0 oder die Ziffer 1 stehen. Wie viele Codes lassen
> sich bilden? Geben Sie das Resultat in
> Zehnerpotenz-Schreibweise an.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

> Ich habe mal folgendes gemacht:
>  
> [mm]40'000^2[/mm] Möglichkeiten

Nee! Andersrum, [mm] 2^{40000}, [/mm] dann kommt's auch hin.

Gruß aus HH-Harburg
Dieter



Bezug
                
Bezug
Logarithmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Di 30.11.2010
Autor: Mathintosh

Hallo und danke vielmal

Ich habe jetzt herausgefunden wie man auf die 10^12041 kommt. Aber wie kommt man auf 1.584?

Bezug
                        
Bezug
Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Di 30.11.2010
Autor: MathePower

Hallo Mathinthosh,


> Hallo und danke vielmal
>  
> Ich habe jetzt herausgefunden wie man auf die 10^12041
> kommt. Aber wie kommt man auf 1.584?


Es steht doch zunächst mal da:

[mm]2^{40000}=10^{12041.19982655925}[/mm]

Nach den Potenzgesetzen gilt:

[mm]10^{12041.19982655925}=10^{12041+0.19982655925}=10^{12041}*10^{0.19982655925}[/mm]

Nun gilt: [mm]10^{0.19982655925} \approx 1.584[/mm]

Damit ist  [mm]2^{40000} \approx 1.584*10^{12041}[/mm]


Gruss
MathePower

Bezug
                
Bezug
Logarithmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Di 30.11.2010
Autor: schotti

[mm] 2^{40'000} [/mm] = [mm] 10^\mbox{lg}(2^{40'000}) [/mm]
also [mm] \mbox{lg}(2^{40'000}) =40'000\cdot\mbox{lg}2 [/mm] = [mm] 12041.1998\ldots [/mm] abrunden und 10^abrundungsbetrag vor 10^ganzzahligen teil stellen: [mm] 10^{0.1998...} \cdot 10^{12041}\approx 1.58\cdot 10^{12041} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]