www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe mit Logarithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Reihe mit Logarithmus
Reihe mit Logarithmus < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe mit Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:50 Mo 27.05.2013
Autor: Sakon

Aufgabe
Man untersuche, ob die folgende unendliche Reihe konvergiert.

[mm] \summe_{i=1}^{n}log(1+n^{-1}) [/mm]

Guten Morgen,

wie ist diese Aufgabe zu lösen?
Ich weiß lediglich von einem Matheprogramm, dass die Reihe divergiert, doch das zeigt keinen Lösungsweg/-ansatz.

Also habe ich ein Minorantenkriterium angesetzt mit [mm] \summe_{i=1}^{n} \bruch{1}{2n} [/mm]

Doch damit das funktioniert, muss ich (glaube ich) zeigen, dass [mm] \limes_{n\rightarrow\infty} \bruch{1}{2n} [/mm] < [mm] \limes_{n\rightarrow\infty} log(1+n^{-1}) [/mm]

also ist, falls dieser Ansatz soweit richtig ist, auch eine Frage, wie ich das zeigen kann.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke im Voraus.

Gruß
Sascha

        
Bezug
Reihe mit Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Mo 27.05.2013
Autor: Diophant

Hallo,

> Man untersuche, ob die folgende unendliche Reihe
> konvergiert.

>

> [mm]\summe_{i=1}^{n}log(1+n^{-1})[/mm]
> Guten Morgen,

>

> wie ist diese Aufgabe zu lösen?
> Ich weiß lediglich von einem Matheprogramm, dass die
> Reihe divergiert, doch das zeigt keinen
> Lösungsweg/-ansatz.

>

> Also habe ich ein Minorantenkriterium angesetzt mit
> [mm]\summe_{i=1}^{n} \bruch{1}{2n}[/mm]

>

> Doch damit das funktioniert, muss ich (glaube ich) zeigen,
> dass [mm]\limes_{n\rightarrow\infty} \bruch{1}{2n}[/mm] <
> [mm]\limes_{n\rightarrow\infty} log(1+n^{-1})[/mm]

>

> also ist, falls dieser Ansatz soweit richtig ist, auch eine
> Frage, wie ich das zeigen kann.

Es ist nicht ganz richtig, denn die Minorantenreihe muss für fast alle n kleiner sein. Es muss also ein n geben, ab dem die Ungleichung

[mm] \frac{1}{2n}
wahr ist.

Das ist sicherlich nicht ganz trivial, aber dürfte auch nicht wirklich schwierig sein.

Ich würde dir vorschlagen, hierzu den Grenzwert von

[mm] 2n*ln\left(1+\bruch{1}{n}\right) [/mm]

zu ermitteln und igrnendwie zu verwenden. Aber vielleicht gibt es auch noch eine günstigere Minorante?

Gruß, Diophant

Bezug
        
Bezug
Reihe mit Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Mo 27.05.2013
Autor: Marcel

Hallo,

> Man untersuche, ob die folgende unendliche Reihe
> konvergiert.
>  
> [mm]\summe_{i=1}^{n}log(1+n^{-1})[/mm]

anstatt [mm] $\summe_{i=1}^{n}$ [/mm] meinst Du sicher [mm] $\summe_{\red{n}=1}^{\red{\infty}}\,.$ [/mm]

Es gilt für jedes [mm] $N\,$ [/mm]
[mm] $$\summe_{n=1}^{N}\log(1+n^{-1})=\log(\produkt_{n=1}^N \left(1+\frac{1}{n}\right))\,.$$ [/mm]

Ferner ist für jedes [mm] $N\,$ [/mm]
[mm] $$\produkt_{n=1}^N \left(1+\frac{1}{n}\right) \ge \sum_{n=1}^N \frac{1}{n}\,.$$ [/mm]

Beweis per Induktion:
Für $N=1$ ist alles klar.

$N [mm] \to [/mm] N+1:$
Sei [mm] $\produkt_{n=1}^N \left(1+\frac{1}{n}\right) \ge \sum_{n=1}^N \frac{1}{n}\,.$ [/mm] Dann ist
[mm] $$\produkt_{n=1}^{N+1} \left(1+\frac{1}{n}\right)=\left(1+\frac{1}{N+1}\right)*\produkt_{n=1}^N \left(1+\frac{1}{n}\right)=\produkt_{n=1}^N \left(1+\frac{1}{n}\right) \ge \sum_{n=1}^N \frac{1}{n}+\frac{1}{N+1}*\produkt_{n=1}^N \left(1+\frac{1}{n}\right) \ge \sum_{n=1}^N \frac{1}{n}+\frac{1}{N+1}*1 \ge \sum_{n=1}^{N+1} \frac{1}{n}\,.$$ [/mm]

Fazit:
Wegen [mm] $\lim_{N \to \infty} \produkt_{n=1}^{N+1} \left(1+\frac{1}{n}\right)=\infty$ [/mm] und [mm] $\log(x) \to \infty$ [/mm] bei $x [mm] \to \infty$ [/mm] folgt...?

Gruß,
  Marcel

Bezug
                
Bezug
Reihe mit Logarithmus: Einfacher beim Produkt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:10 Mo 27.05.2013
Autor: Marcel

Ergänzung:
Es geht einfacher:
[mm] $$\produkt_{n=1}^{N} \left(1+\frac{1}{n}\right)=\produkt_{n=1}^{N} \left(\frac{n+1}{n}\right)=\frac{\produkt_{n=1}^{N} n+1}{\produkt_{n=1}^{N} n}=\frac{\produkt_{n=2}^{N+1} n}{\produkt_{n=1}^{N} n}=N+1$$ [/mm]

Gruß,
  Marcel

Bezug
                        
Bezug
Reihe mit Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Mo 27.05.2013
Autor: fred97


> Ergänzung:
>  Es geht einfacher:
>  [mm]\produkt_{n=1}^{N} \left(1+\frac{1}{n}\right)=\produkt_{n=1}^{N} \left(\frac{n+1}{n}\right)=\frac{\produkt_{n=1}^{N+1} n+1}{\produkt_{n=1}^{N+1} n}=\frac{\produkt_{n=2}^{N+2} n}{\produkt_{n=1}^{N+1} n+1}=\frac{N+2}{2}[/mm]

Ist da nicht was schief gelaufen ? Das Produkt ist = N+1

FRED

>  
> Gruß,
>    Marcel


Bezug
                                
Bezug
Reihe mit Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:15 Mo 27.05.2013
Autor: Marcel

Hi Fred,

> > Ergänzung:
>  >  Es geht einfacher:
>  >  [mm]\produkt_{n=1}^{N} \left(1+\frac{1}{n}\right)=\produkt_{n=1}^{N} \left(\frac{n+1}{n}\right)=\frac{\produkt_{n=1}^{N+1} n+1}{\produkt_{n=1}^{N+1} n}=\frac{\produkt_{n=2}^{N+2} n}{\produkt_{n=1}^{N+1} n+1}=\frac{N+2}{2}[/mm]
>  
> Ist da nicht was schief gelaufen ?

doch, habe ich gerade auch gemerkt.

> Das Produkt ist = N+1

Mhm, ja, irgendwo bin ich gerade zu blöd zum Kürzen...

Gruß,
  Marcel

Bezug
                                
Bezug
Reihe mit Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:19 Mo 27.05.2013
Autor: Marcel

Hi Fred,

> > Ergänzung:
>  >  Es geht einfacher:
>  >  [mm]\produkt_{n=1}^{N} \left(1+\frac{1}{n}\right)=\produkt_{n=1}^{N} \left(\frac{n+1}{n}\right)=\frac{\produkt_{n=1}^{N+1} n+1}{\produkt_{n=1}^{N+1} n}=\frac{\produkt_{n=2}^{N+2} n}{\produkt_{n=1}^{N+1} n+1}=\frac{N+2}{2}[/mm]
>  
> Ist da nicht was schief gelaufen ? Das Produkt ist = N+1

so, jetzt habe ich die ganzen Fehler korrigiert: Beim C&P sollte man auch
die Grenzen beachten und ggf. wieder passend machen (da war echt viel
schiefgelaufen deswegen) ^^

Gruß,
  Marcel

Bezug
        
Bezug
Reihe mit Logarithmus: aller guten Dinge...
Status: (Antwort) fertig Status 
Datum: 10:21 Mo 27.05.2013
Autor: reverend

Hallo Sakon, [willkommenmr]

Wenn Du erstmal ein bisschen umformst, geht das ganze noch viel einfacher.

Ich übernehme Marcels Korrektur, ohne die die Aufgabe ja auch gar keinen Sinn macht. Außerdem schreibe ich die unendliche Summe zu einem Grenzwert um und wende ein bisschen Bruchrechnung und Logarithmusgesetze an:

[mm] \summe_{n=1}^{\infty}\log{(1+n^{-1})}=\lim_{N\to\infty}\summe_{n=1}^{N}\log{\left(\bruch{n}{n}+\bruch{1}{n}\right)}=\lim_{N\to\infty}\summe_{n=1}^{N}\log{\left(\bruch{n+1}{n}\right)}=\lim_{N\to\infty}\summe_{n=1}^{N}(\log{(n+1)}-\log{n})=\cdots [/mm]

So, und jetzt ist es nur noch ein Schritt.
Das Geheimnis heißt "Teleskopsumme". Schreib Dir die Summe mal aus, sagen wir für N=3 und N=4 (Achtung: großes N!). Dann solltest Du sehen, was passiert.

Grüße
reverend

Bezug
                
Bezug
Reihe mit Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Mo 27.05.2013
Autor: Marcel

Hi,

> Hallo Sakon, [willkommenmr]
>  
> Wenn Du erstmal ein bisschen umformst, geht das ganze noch
> viel einfacher.
>  
> Ich übernehme Marcels Korrektur, ohne die die Aufgabe ja
> auch gar keinen Sinn macht. Außerdem schreibe ich die
> unendliche Summe zu einem Grenzwert um und wende ein
> bisschen Bruchrechnung und Logarithmusgesetze an:
>  
> [mm]\summe_{n=1}^{\infty}\log{(1+n^{-1})}=\lim_{N\to\infty}\summe_{n=1}^{N}\log{\left(\bruch{n}{n}+\bruch{1}{n}\right)}=\lim_{N\to\infty}\summe_{n=1}^{N}\log{\left(\bruch{n+1}{n}\right)}=\lim_{N\to\infty}\summe_{n=1}^{N}(\log{(n+1)}-\log{n})=\cdots[/mm]
>  
> So, und jetzt ist es nur noch ein Schritt.
>  Das Geheimnis heißt "Teleskopsumme". Schreib Dir die
> Summe mal aus, sagen wir für N=3 und N=4 (Achtung: großes
> N!). Dann solltest Du sehen, was passiert.

das ist mir gerade auch aufgefallen.

'Witzig' ist ja, dass wenn stets [mm] $a_n [/mm] > 0$ ist:
[mm] $$\produkt_{k=1}^N \frac{a_{k+1}}{a_k}$$ [/mm]
[mm] $$\iff \sum_{k=1}^N (\log(a_{k+1})-\log(a_k))$$ [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
Reihe mit Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:22 Mo 27.05.2013
Autor: Marcel

Hi,

und noch eine letzte Variante:

> Man untersuche, ob die folgende unendliche Reihe
> konvergiert.
>  
> [mm]\summe_{i=1}^{n}log(1+n^{-1})[/mm]

benutze [mm] $\log(\tfrac{n+1}{n})=\log(n+1)-\log(n)\,,$ [/mm] dann hast Du eine Ziehharmonikareihe.

Wie's weiter geht: Informationen dazu findest Du

    hier

Gruß,
  Marcel

Bezug
                
Bezug
Reihe mit Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:24 Mo 27.05.2013
Autor: reverend

Hallo Marcel,

> und noch eine letzte Variante:
> > Man untersuche, ob die folgende unendliche Reihe
> > konvergiert.
> >
> > [mm]\summe_{i=1}^{n}log(1+n^{-1})[/mm]

>

> benutze [mm]\log(\tfrac{n+1}{n})=\log(n+1)-\log(n)\,,[/mm] dann hast
> Du eine Ziehharmonikareihe.

Ja, das habe ich auch gerade geschrieben. ;-)
Allerdings habe ich das Wort "Teleskopsumme" verwendet, das das gleiche bedeutet.

> Wie's weiter geht: Informationen dazu findest Du

>

> hier

Grüße
reverend

Bezug
                        
Bezug
Reihe mit Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:27 Mo 27.05.2013
Autor: Marcel


> Hallo Marcel,
>  
> > und noch eine letzte Variante:
>  > > Man untersuche, ob die folgende unendliche Reihe

>  > > konvergiert.

>  > >

>  > > [mm]\summe_{i=1}^{n}log(1+n^{-1})[/mm]

>  >
>  > benutze [mm]\log(\tfrac{n+1}{n})=\log(n+1)-\log(n)\,,[/mm] dann

> hast
>  > Du eine Ziehharmonikareihe.

>  
> Ja, das habe ich auch gerade geschrieben. ;-)

"zwei D...fe, ein Gedanke", wie man so schön sagt! ;-)

>  Allerdings habe ich das Wort "Teleskopsumme" verwendet,
> das das gleiche bedeutet.

Klar, es ist auch schöner. Ich vergesse es nur immer, irgendwie denke ich
immer an die Ziehharmonika ^^

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]