www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelVektorbestimmung(orthogonal)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Längen, Abstände, Winkel" - Vektorbestimmung(orthogonal)
Vektorbestimmung(orthogonal) < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorbestimmung(orthogonal): Idee
Status: (Frage) beantwortet Status 
Datum: 19:08 So 24.10.2010
Autor: potentialman

Aufgabe
Gegeben sind die Punkte A(-2/-6/-5),B(3/-4/-1) und C (4/-2/-1).
Bestimmen Sie einen Vektor n ungleich o, der zu AB und AC orthogonal ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Kann mir jemand erklären wie ich an diese Aufgabe rangehen soll ? Bin voll die Mathe Pfeife und neu hier.

        
Bezug
Vektorbestimmung(orthogonal): Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 So 24.10.2010
Autor: MathePower

Hallo potentialman,

[willkommenmr]


> Gegeben sind die Punkte A(-2/-6/-5),B(3/-4/-1) und C
> (4/-2/-1).
>  Bestimmen Sie einen Vektor n ungleich o, der zu AB und AC
> orthogonal ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Kann mir jemand erklären wie ich an diese Aufgabe
> rangehen soll ? Bin voll die Mathe Pfeife und neu hier.

Bilde zunächst die Vektoren

[mm]\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}[/mm]

[mm]\overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA}[/mm]

,wobei [mm]\overrightarriow{OB}[/mm] die Differenzvektor des Punktes B  zum Ursprung ist,
analog für [mm]\overrightarriow{OA}[/mm], [mm]\overrightarriow{OC}[/mm].

Ist [mm]\overrightarrow{n}=\pmat{n_{1} \\ n_{2} \\ n_{3}}[/mm] ein
noch ein Vektor, der zu [mm]\overrightarrow{AB}[/mm] und [mm]\overrightarrow{AC}[/mm],
dann ist folgendes Gleichungssystem zu lösen:

[mm]\overrightarrow{AB} \* \overrightarrow{n}=0[/mm]

[mm]\overrightarrow{AC} \* \overrightarrow{n}=0[/mm]

Wobei hier "*" das Skalarprodukt zweier Vektoren ist.

Alternativ kann dieser Vektor [mm]\overrightarrow{n}[/mm] mit Hilfe des
Vektorproduktes der Vektoren [mm]\overrightarrow{AB}[/mm]  und [mm]\overrightarrow{AC} [/mm] berechnet werden.


Gruss
MathePower

Bezug
                
Bezug
Vektorbestimmung(orthogonal): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 So 24.10.2010
Autor: potentialman

AC * n = o
6 x n1 + 4 x n + 4 x n = 0
14n = 0
?
trotzdem habe ich hier keinen vektor...> Hallo potentialman,

>  
> [willkommenmr]
>  
>
> > Gegeben sind die Punkte A(-2/-6/-5),B(3/-4/-1) und C
> > (4/-2/-1).
>  >  Bestimmen Sie einen Vektor n ungleich o, der zu AB und
> AC
> > orthogonal ist.
>  >  Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>  >  Kann mir jemand erklären wie ich an diese Aufgabe
> > rangehen soll ? Bin voll die Mathe Pfeife und neu hier.
>
> Bilde zunächst die Vektoren
>  
> [mm]\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}[/mm]
>  
> [mm]\overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA}[/mm]
>  
> ,wobei [mm]\overrightarriow{OB}[/mm] die Differenzvektor des Punktes
> B  zum Ursprung ist,
>  analog für [mm]\overrightarriow{OA}[/mm], [mm]\overrightarriow{OC}[/mm].
>  
> Ist [mm]\overrightarrow{n}=\pmat{n_{1} \\ n_{2} \\ n_{3}}[/mm] ein
>  noch ein Vektor, der zu [mm]\overrightarrow{AB}[/mm] und
> [mm]\overrightarrow{AC}[/mm],
>  dann ist folgendes Gleichungssystem zu lösen:
>  
> [mm]\overrightarrow{AB} \* \overrightarrow{n}=0[/mm]
>  
> [mm]\overrightarrow{AC} \* \overrightarrow{n}=0[/mm]
>  
> Wobei hier "*" das
> Skalarprodukt
> zweier Vektoren ist.
>  
> Alternativ kann dieser Vektor [mm]\overrightarrow{n}[/mm] mit Hilfe
> des
>  Vektorproduktes
> der Vektoren [mm]\overrightarrow{AB}[/mm]  und [mm]\overrightarrow{AC}[/mm]
> berechnet werden.
>  
>
> Gruss
>  MathePower

hab bei AC,  14n= 0 raus. was soll ich mit diesem wert machen ?

Bezug
                        
Bezug
Vektorbestimmung(orthogonal): Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 So 24.10.2010
Autor: M.Rex

Hallo

Die Komponenten des gesuchten Vektors kannst du nicht einfach so zusammenfassen.

Es gilt:

[mm] \overrightarrow{AB}\perp\vec{n} [/mm]
[mm] \gdw \overrightarrow{AB}*\vec{n}=0 [/mm]

[mm] Mit\overrightarrow{AB}=\vektor{5\\2\\4} [/mm]
und [mm] \vec{n}=\vektor{n_{1}\\n_{2}\\n_{3}} [/mm]

bekommst du also folgende erste Gleichung:

[mm] 5n_{1}+2n_{2}+4n_{3}=0 [/mm]

Aus [mm] \overrightarrow{AC}\perp\vec{n} [/mm] ergibt sich als zweite Gleichung:
[mm] 6n_{1}+4n_{2}+4n_{3}=0 [/mm]

Also bekommst du folgendes LGS, was du lösen sollst. Beachte aber, dass es nicht eine eindeutige Lösung gibt.

[mm] \vmat{5n_{1}+2n_{2}+4n_{3}=0\\6n_{1}+4n_{2}+4n_{3}=0} [/mm]

Marius


Bezug
                                
Bezug
Vektorbestimmung(orthogonal): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 So 24.10.2010
Autor: potentialman

komme beim lgs nicht weiter...
habe jetzt da stehen:
5   2   -4    0
0  -8   -44  0
n1 n2   n3  

also -8n2 -44n3 = 0
ich weiß das ich es immer in eine dreiecksform bringen muss... jedoch hab ich hier nur 2 gleichungen... und bin schon wieder überfordet.
werde morgen wieder hier schreiben, da ich was anderes jetzt noch vorhab danke für die hilfe ! echt tolles forum.> Hallo

>  
> Die Komponenten des gesuchten Vektors kannst du nicht
> einfach so zusammenfassen.
>  
> Es gilt:
>  
> [mm]\overrightarrow{AB}\perp\vec{n}[/mm]
>  [mm]\gdw \overrightarrow{AB}*\vec{n}=0[/mm]
>  
> [mm]Mit\overrightarrow{AB}=\vektor{5\\2\\4}[/mm]
>  und [mm]\vec{n}=\vektor{n_{1}\\n_{2}\\n_{3}}[/mm]
>  
> bekommst du also folgende erste Gleichung:
>  
> [mm]5n_{1}+2n_{2}+4n_{3}=0[/mm]
>  
> Aus [mm]\overrightarrow{AC}\perp\vec{n}[/mm] ergibt sich als zweite
> Gleichung:
>  [mm]6n_{1}+4n_{2}+4n_{3}=0[/mm]
>  
> Also bekommst du folgendes LGS, was du lösen sollst.
> Beachte aber, dass es nicht eine eindeutige Lösung gibt.
>  
> [mm]\vmat{5n_{1}+2n_{2}+4n_{3}=0\\6n_{1}+4n_{2}+4n_{3}=0}[/mm]
>  
> Marius
>  


Bezug
                                        
Bezug
Vektorbestimmung(orthogonal): Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 So 24.10.2010
Autor: M.Rex

Hallo

Da du nur einen, nicht einen speziellen Vektor suchst, kannst du eine Komponente mit einer Zahl deiner Wahl (oder einem Parameter) besetzen.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]